
6 IT Pro January/February 2010 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 1520-9202/10/$26.00 © 2010 IEEE

IT WORKFORCE

Luiz Fernando Capretz, University of Western Ontario

Faheem Ahmed, United Arab Emirates University

By mapping soft skills and psychological traits to the main stages of
the software life cycle, the authors claim that assigning people with
personality types best suited to a particular stage increases the chances
of the project’s successful outcome.

S oftware	 is	 a	 product	 of	 such	 human	
activities	as	problem	solving,	cognitive	
information	processing,	and	social	 in-
teraction.	 However,	 people	 are	 more	

complicated	and	less	predictable	than	computers,	
thus	the	complexity	of	personality	entails	intricate	
dynamics	that	ultimately	become	an	integral,	yet	
often	overlooked,	part	of	 software	development.	
Sooner	or	later,	major	issues	relevant	to	software	
engineering	boil	down	to	the	people	involved	with	
software	production	and	their	personality	traits.	

Over	the	past	three	decades,	software	engineer-
ing	has	become	a	very	broad	 field;	consequently,	
the	skills	necessary	to	successfully	work	in	this	area	
30	years	ago	might	no	longer	apply.	For	instance,	
software	design	has	become	much	more	than	ma-
nipulating	 formal	 or	 rigorous	 notations—it	 now	
revolves	 around	 the	 interaction	 between	 design-
ers	and	users	(primarily,	the	designer’s	perception	
of	what	the	user	wants,	and	the	user’s	perception	
of	what	he	or	she	really	needs).	Today,	successful	
software	is	developed	after	a	tremendous	amount	
of	time	is	spent	with	the	user	in	the	form	of	pro-
totyping,	 experimentation,	 and	 feedback.	 In	 fact,	
these	 three	 processes	 represent	 the	 de	 facto	 life	
cycle	of	many	useful	software	systems.

Research	relating	personality	styles	to	software	
engineering	has	been	scattered	and	difficult	to	in-

terpret	uniformly.	This	paucity	could	indicate	that	
the	relationship	between	software	engineering	and	
personality	styles	is	too	complex	to	investigate.	For	
instance,	certain	personality	 traits	such	as	 intro-
version/extroversion	might	have	a	significant	 im-
pact	on	system	analysis,	but	they	might	not	affect	
the	other	 software	 life	 cycle	phases.	Thus,	 stud-
ies	to	determine	which	personality	types	are	more	
suitable	for	certain	software	development	activities	
are	of	paramount	importance.

A	major	rationale	behind	this	article	is	to	discern	
connections	between	personality	traits	and	the	pro-
cess	of	 software	development.	This	 interdisciplin-
ary	human-centered	research	incorporates	theories	
about	psychological	types,	human	factors,	and	soft-
ware	engineering.	It	contributes	toward	a	bridge	that	
links	software	engineering	and	software	psycholo-
gy,	and	it	attempts	to	shed	light	on	several	outstand-
ing	problems	that	plague	the	software	industry.

Myers-Briggs Type Indicator
The	 Myers-Briggs	 Type	 Indicator	 (MBTI)	 is	 a	
well-known	instrument	for	measuring	and	under-
standing	individual	personality	types.1	It	current-
ly	ranks	among	the	most	popular	indicators	used	
in	 the	 workplace,	 establishing	 four	 dimensional	
pairs	for	assessing	personality	types:	extroversion	
(E)	and	introversion	(I),	sensing	(S)	and	intuition	

Luiz Fernando Capretz, University of Western Ontario

Making Sense
of Software
Development and
Personality Types

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

 computer.org/ITPro 7

(N),	thinking	(T)	and	feeling	(F),	and	judging	(J)	
and	perceiving	(P).	We	can	use	these	four	sets	of	
preferences,	selecting	one	trait	from	each	pair,	to	
delineate	a	person’s	preferred	type.	Table	1	shows	
the	 16	 possible	 configurations,	 along	 with	 per-
centages	of	 the	various	types	 in	a	representative	
sample	of	the	US	adult	population.1

Extroversion (E) and Introversion (I)
While	Es	prefer	 looking	outward,	 Is	have	 an	 in-
ward	view.	Es	are	talkative,	outgoing,	conversation	
initiators.	 Is,	 in	contrast,	are	quiet,	reserved,	and	
tend	to	respond	to	conversation	rather	than	start	it.	

Sensing (S) and Intuition (N)
Although	an	S	 individual	might	need	 to	absorb	a	
whole	series	of	facts	in	a	linear	fashion,	an	N	person	
can	take	in	the	same	information	through	abstrac-
tion	and	establish	meaning	beyond	the	information	
captured	only	by	 the	 senses.	S	 individuals	dislike	
new	problems	unless	prior	experience	shows	how	to	
solve	them;	conversely,	N	people	enjoy	solving	new	
problems	and	dislike	performing	trivial	tasks.

Thinking (T) and Feeling (F)
The	terms	 thinking	and	 feeling	 in	this	context	re-
fer	to	the	process	of	decision-making.	The	MTBI	
scale	 identifies	 thinking	 as	 the	 logical	 way	 of	
making	a	decision,	whereas	feeling	describes	the	
tendency	to	rely	on	emotional	values	as	a	basis	for	
making	decisions.	T	people	are	principle-orient-
ed	and	firm,	whereas	F	people	are	subjective	and	
have	strong	interpersonal	skills.

Judging (J) and Perceiving (P)
Judging	identifies	the	tendency	to	be	extremely	or-
ganized.	At	the	other	extreme,	a	P	individual	prefers	
delaying,	appears	to	be	disorganized,	and	seems	to	
be	 distracted	 from	 completing	 a	 task	 until	 some	
little	bell	 goes	off	 at	 the	 last	minute	and	propels	
this	individual	to	get	the	job	done.	The	adherence	
to	deadlines,	punctuality,	and	closure	describes	J	
personalities,	while	the	terms	open-ended,	adapt-
able	and	spontaneous	apply	to	P	types.

Previous Studies
To	 date,	 only	 a	 handful	 of	 studies	 have	 inves-
tigated	 the	 relationship	 between	 human	 skills	
and	 software	 development	 life	 cycle	 phases2,3	

or	 attempted	 to	 identify	 the	 characteristics	 of	
top-performing	 software	 developers.4,5	 In	 fact,	
Norman	 Kerth	 and	 his	 colleagues6	 are	 skepti-
cal	about	the	MBTI’s	ability	to	predict	who	will	
make	a	good	software	engineer	because	the	met-

ric	doesn’t	consider	variables	such	as	passion,	ex-
perience,	or	financial	rewards.	Although	they’re	
correct	about	a	single	personality	test’s	inability	
to	predict	success	in	a	field	as	broad	as	software	
engineering,	 they	 contradict	 themselves	 when	
they	 state,	 “We	 see	 zero	 indication	 that	 MBTI	
preference	correlates	with	job	success,”	but	later	
affirm,	 “systematically	 excluding	 certain	 types	
from	a	team	produces	an	imbalance	that	is	likely	
to	have	a	poor	performance.”6

This	debate	is	far	from	over.	Although	research-
ers	 have	 questioned	 MBTI	 measures	 in	 other	
contexts,7	the	tool	is	still	one	of	the	most	popu-
lar	 for	 ascertaining	 personality	 types,	 especially	
because	extensive	data	supports	its	findings.	The	
instrument	itself	doesn’t	predict	career	success—
it	 merely	 identifies	 occupational	 preferences—
but	personality	has	a	great	impact	on	a	worker’s	
motivation,	 performance,	 and	 retention	 in	 the	
field.8–11	A	common	thread	running	through	the	
results	of	 these	 and	other	 similar	 studies	 is	not	
only	the	prevalence	of	I,	T,	and	J	types,	as	opposed	
to	fewer	E,	F,	and	P	types,	but	also	almost	as	many	
S	as	N	types	among	software	professionals.	

Although	 empirical	 studies	 suggest	 that	 the	
MBTI	 poles	 are	 related	 to	 software	 engineering,	
they	don’t	specify	at	which	phase	of	the	software	
life	cycle	they	occur	or	how	they’re	related.	Despite	
early	interests	in	the	importance	of	human	factors	
in	 software	 development—in	 particular,	 the	 per-
sonal	characteristics	of	humans	 involved	 in	soft-
ware	 engineering	 processes—such	 factors	 have	
been	neglected,	 thus	hindering	process	 improve-
ments.	A	more	focused	approach	might	help	iden-
tify	at	which	software	life	cycle	phase	a	particular	
personality	type	has	the	most	significant	impact.

Mapping Job Requirements and
Soft Skills to Personality Types
Software	 engineering	 is	 roughly	 characterized	as	
a	set	of	activities	comprising	system	analysis,	de-
sign,	 programming,	 testing,	 and	 maintenance.	
Logically,	these	different	tasks	combine	to	achieve	

Table 1. The 16 Myers-Briggs Type Indicator (MBTI)
types and their distribution among the US adult
population.*

ISTJ = 11.6% ISFJ = 13.8% INFJ = 1.5% INTJ = 2.1%

ISTP = 5.4% ISFP = 8.8% INFP = 4.4% INTP = 3.3%

ESTP = 4.3% ESFP = 8.5% ENFP = 8.1% ENTP = 3.2%

ESTJ = 8.7% ESFJ = 12.3% ENFJ = 2.5% ENTJ = 1.8%

* E = extroversion, I = introversion, S = sensing, N = intuition,
 T = thinking, F = feeling, J = judging, and P = perceiving

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

8	 IT Pro January/February 2010

IT WORKFORCE

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirementsSystem analyst job requirements

Liasing extensively with external or internal clients

Analyzing clients’ existing systems

Translating client requirements into highly specified
project briefs

Identifying options for potential solutions, assessing them
for both technical and business suitability

Creating logical and innovative solutions to complex
problems

Drawing up specific proposals for modified or replacement
systems

Producing project feasibility reports

Working closely with developers and a variety of end users
to ensure technical compatability and user satisfaction

Overseeing the implementation of a new system

Planning ahead and working flexibly to a deadline

Keeping up to date with technical and industry sector
development

Figure 1. Mapping system analysts and their skills to personality types. When appointing a system
analyst, it’s preferable to look for people possessing extrovert (E) and feeling (F) traits.

the objectives of software construction and op-
eration. The micro-level interpretation demands
a set of abilities to carry them out effectively—for
example, the skills required to design a software
system are quite different from those needed to test
it. The hypothesis that not everyone can perform
all tasks effectively suggests that personality traits
play a critical role; thus, if we can map job and skill
requirements with personality characteristics, we
could establish a link between software life cycle
phases and corresponding personality types.

After analyzing job descriptions for software
engineers running in newspapers and magazines,
posted on monster.com, and described in various
texts,12 we determined the preferable skills and re-
lated them to skills requirements. Subsequently,
we mapped the skills rated as desirable and highly
desirable for effectively performing the tasks in
each phase to MBTI dimensions. Job advertise-
ments generally divide software engineering skill
requirements into two categories: hard and soft
skills. Hard skills are the technical requirements
and knowledge a person should possess to perform
a task; they include the theoretical foundations
and practical experience a person should have to
comfortably execute the planned task.

Although soft skills incorporate the psycho-
logical phenomena that include personality traits,
social interaction abilities, communication, and

personal habits, potential employers tend to im-
ply that soft skills should complement hard skills.
Consequently, we related job requirements (or
hard skills) to personality requirements (or soft
skills) for different positions that reflect the various
software life cycle phases, such as system analysts,
designers, programmers, testers, and maintainers.
Moreover, we also mapped the different soft skills
to an individual’s personality characteristics by
rating them as highly desirable or desirable.

System Analysis
The system analysis phase emphasizes the
identification of high-level components in a
real-world application and involves the software
system’s decomposition into its main modules.
In addition to other minor skills, this phase re-
quires that the system analyst determine user
needs, consider the system’s client requirements,
understand the system’s essential features, and
create an abstract application model that meets
these requirements.

System analysis demands a great deal of hu-
man interaction with users and clients. To com-
municate with users, Es are better at talking and
getting responses than Is because the latter have
a difficult time working with users to accurately
represent a problem due to their internal orienta-
tion. Thus, it seems reasonable to assume that

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

	 computer.org/ITPro 	 9

extroversion would affect this phase positively.
Additionally, system analysts must be able to em-
pathize with users’ problems to fully understand
their needs, hence interpersonal skills are highly
desirable. Recognizing this fact can offer a criti-
cal insight to software professionals, who are of-
ten viewed as being disconnected from users.

In general, software engineers tend to assume
that because they possess more technical expertise
than most users, their solutions are more appro-
priate, but users don’t always agree with this as-
sessment. Es and Fs interact with users better than
Is and Ts; in particular, Fs excel at making people
feel comfortable, whereas Ts aren’t attuned to user
feelings. Therefore, when appointing system ana-
lysts, it’s preferable to look for EFs (see Figure 1).

Software Design
“Design” is an ambiguous word: although there
are great variations among design principles, it’s
possible to find a common set of features that ap-
ply to any artifact’s design, whether it’s a poster,
a household appliance, or a housing development.
Although software design is still a relatively new
field and far from a consensus on its relevant
principles, it requires the human creativity evi-
dent in other disciplines such as architecture,
marketing, and graphic design, rather than the

hard-edged formulaic construction of other 	
engineering fields. Software design is an explor-
atory process: the designer searches for compo-
nents by trying out a variety of schemes to discover
the most natural and reasonable way of refining
a solution. Although software design might seem
like an easy task, in the design of large and com-
plex software, the identification of key components
is an arduous and time-consuming endeavor. Rep-
etitions aren’t unusual, since a good design usually
takes several iterations. Furthermore, the number
of iterations also depends on the designer’s insight
and experience in the application domain.

Software designers should have the ability to
see the big picture. They should be able to isolate
relevant items from large quantities of fuzzy and
imprecise data, which requires the intuition to
discern patterns. Naturally, designers should be
intuitive, as those who are imaginative and in-
novative thrive at designing, especially in com-
parison to their fact-oriented, black-and-white S
counterparts. Software designers perform a wide
range of tasks, which include prototyping, elabo-
rating processing functions, and defining inputs
and outputs. The first part of the design stage
might require skills similar to those needed for
analysis, as designing involves team discussions
and interaction with the user. As Figure 2 shows,

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirements
Software designer job requirements

Having the ability to craft scenarios, storyboards,
information architecture, features, and interfaces

Collaborating closely with management, engineers, and
fellow designers to evaluate and iterate on ideas and
designs

Prototyping user experience and design ideas

Keeping up to date with technical and industry sector
developments

Understanding business opportunities and assisting project
team with respect to architecture of the technical solution

Creating an architectural design with the necessary
specifications for the hardware, software, and data

Working closely with system users to ensure that
implementation meets customer requirements and is
aligned to the system’s technical architecture

Developing, documenting, and revising system design
procedures

Participating in testing and evaluating system
functionality to ensure successful integration

Determining hardware, software, and network
requirements of the software system

Assisting with system analyses; cost and bidding activities

Figure 2. Mapping software designers and their skills to personality types. A combination of
intuition (N) and thinking (T) are paramount to thrive in design.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

10	 IT Pro January/February 2010

IT WORKFORCE

N and T types are highly desirable for software
designers, whereas perceiving and feeling are
only somewhat desirable. Ps would help reach
the best, rather than the first, design solution.
Also important is the capacity to predict how 	
users will feel about the design.

Programming
Programming involves translating a refined
version of the design into programs. This phase
entails the identification of control structures,
relevant variables, and data structures, as well
as a detailed understanding of a programming
language’s syntax and specifics. Programmers
must follow an iterative stepwise refinement
process that’s mostly top-down, breadth first.
Thus, programmers should attend to details
and keep a logical and analytical thinking style.

The thinking dimension of the MBTI de-
scribes the way in which someone makes logical
decisions. The problem of interpreting and giv-
ing meaning to variables might be a headache,
especially for F types rather than for detached
analytical, T types, suggesting that the program-
ming stage is more suitable for Ts. Moreover,
programming tasks such as determining the de-
tails of module logic, establishing file layout, and
coding programs demand little interpersonal
contact and reveal the programmer’s work life as
essentially a solitary one.

Programming is an activity that demands logi-
cal, impersonal analysis. As Figure 3 shows, pro-
grammers working with the specifications from
designers need to be logical (Ts), pay attention to
details (Ss), and have the capacity to work inde-
pendently (Is). They might sometimes program
in pairs or even within a team, but the core of
programming requires the ability to concentrate
and work alone for many hours. Given these
characteristics, it isn’t surprising that so many
software engineers are ISTs.

Testing
Testing involves finding defects in software. The
testing stage isn’t the first time that defects are
found—they can emerge in system analysis and
design phases—but testing’s main focus is to
find as many defects as possible. Several tech-
niques can make testing more effective. First,
each module is isolated from other components
in the system and tested individually. Such test-
ing, known as unit testing, verifies that a module
functions properly with the various input ex-
pected (and unexpected!) based on the module’s
specification. After collections of modules are
unit-tested, the next step is to ensure that the
interfaces among them are well-defined—this is
called integration testing. Finally, system testing
is the process of verifying and validating whether
the whole software works properly.

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirements
Software programmer job requirements

Participates in development efforts; elaborates and
documents all business-related applications

Analyzes business requirements for system
subcomponents and prepares detailed programming
specifications for assigned system applications

Formulates test cases to test application software in
development, to ensure a program’s functionality
matches its specification’s business requirements and to
ensure the company’s programming standards are
followed

Analyzes technical specifications; builds and implements
functionally accurate and modular application programs
according to approved design specifications

Coordinates programming tasks, team members, and
projects within the department

Determines forms, procedures, and other documentation
needed for installation and maintenance of application
programs

Translates detailed flow charts into coded machine
instructions and confers with technical personnel in
planning programs

Selects and incorporates available software programs

Figure 3. Mapping programmers and their skills to personality types. Most programmers are
introvert (I), sensing (S), thinking (T) types.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

	 computer.org/ITPro 	 11

Testing strategies are neither random nor hap-
hazard; rather, they should be approached in a me-
thodical and systematic manner. After a defect is
detected, debugging can be a frustrating and emo-
tionally challenging activity that can lead software
engineers to restructure their thinking and deci-
sions. Testing requires attention to details and is
often performed by individuals working indepen-
dently, and the pressure to meet deadlines and de-
liver the product is enormous. Thus, precision (S)
and order (J) are highly desirable traits. The pro-
cess of testing demands a great amount of persis-
tence, especially the task of choosing from a wide
range of possibilities and keeping an incredible de-
gree of attention to detail. In theory, S and J people
would be more successful in the testing phase, as
illustrated in Figure 4.

Maintenance
Software is normally subject to continual change
after it’s written and while it’s operational, thus
indicating the necessity of maintaining an 	
evolving system. Projects involving research
and state-of-the-art development tend to attract
more N people, whereas those having tasks con-
cerned with maintaining and enhancing soft-
ware systems tend to attract more S types, who
tend to be practical, realistic, and observant.

In general, an S person prefers to perform a
task in a particular way because it has proven
to be successful in the past. Conversely, the N
person prefers to perform the task in a totally
different way because it has never been done in
that manner before. Thus, Ns are likely to be
bored with the incremental improvements and
small fixes that software maintenance entails
because they put more emphasis on new proj-
ects. S people prefer jobs that require the use of
well-learned knowledge, rather than the devel-
opment of new solutions; they’re also very good
observers and tend to focus on details. Main-
tenance compels a thorough understanding
of the software system, especially in terms of
how one part can affect the other, thus S people
would excel at maintenance because they like to
figure out how things work.

Ps like to explore every possibility, and, conse-
quently, they have difficulty making decisions,
whereas Js seek closure. Ps should therefore
also enjoy maintenance because they’re more
open to changes and adaptations, and they’re
more sympathetic to the constant changes re-
quested by users. SPs’ problem-solving ability
and hands-on approach are an asset for mainte-
nance because such people like to solve practi-
cal problems and enjoy the challenge of fixing

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirements
Software tester job requirements

Coordinates necessary testing resources to ensure
completion by deadlines

Gathers test requirements and produces test
specifications

Performs manual execution of tests, records results, and
investigates and logs results

Manages and supports the team in creating usable test
assets for both manual and automated test scripts

Demonstrates ability to define and implement medium-to-
large-scale test plans and strategies according to quality
objectives, project timelines, and resources

Manages defects, including the identification, logging,
tracking, triaging, and verification of issues

Identifies and mitigates business and technical risks in the
developement and execution of the test strategy

Analyzes and evaluates, documents, and communicates
testing progress for stakeholders

Ensures test progress, methodologies, and tools are applied
appropriately and that test phase entry/exit criteria are
agreed to by stakeholders and applied by the test team

Maintains relevant test results databases

Communicates and negotiates testing timelines, budget,
staffing, scope, and critical milestones with project
managers

Figure 4. Mapping testers and their skills to personality types. In theory, sensing (S) and judging (J)
people would be more successful in the testing phase.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

12	 IT Pro January/February 2010

IT WORKFORCE

programs and systems. Figure 5 displays these
relationships, highlighting the qualities of soft-
ware maintainers.

Software Life Cycle plus Personality Types
Table 2 shows the five main stages of a soft-
ware life cycle model and proposes a framework
to conceptualize the points at which a particu-
lar personality type could have more effect. We
assume that system analysis, design, program-
ming, testing, and maintenance are the stages
occurring most often in well-accepted software
life cycle models, despite some models not con-
sidering a few of these stages or including oth-
ers. Regardless of the model used, a particular
personality dimension influences each of the five
stages to some extent. The theory behind per-
sonality types implies that each one is likely to
affect some phases of the software life cycle more
than others. Table 2 shows the personality types
that appear most relevant to each stage; we’ve al-
ready explained the rationale for each selection.

It’s time to recognize that no single personality
type fits the wide spectrum of tasks that encom-
pass the engineering of software. The software

industry can’t afford to lose professionals who
might come from a diverse group of people.

A broad range of personality types is benefi-
cial to software engineering.13 Most software or-
ganizations don’t have solo performers because
better software results from the combined ef-
forts of a variety of mental processes, outlooks,
and values. It might be advantageous for software
organizations to consider employee strengths
when assigning project tasks. More than ever,
software engineering needs a diversity of per-
sonality types. Putting it in a software context, a
diversity of skills and personality traits can solve
the myriad problems associated with software
development and maintenance. Organizations
would benefit from a conscious attempt to diver-
sify the styles or personalities of their software
engineers because the strongest teams have the
most diverse perspectives. Exposure to software
psychology can help this diversity flourish.	

References
	 1.	 I.B. Myers et al., MBTI Manual: A Guide to the Develop-

ment and Use of the Myers-Briggs Type Indicator, Consult-
ing Psychologists Press, 1998.

	 2.	 S.T. Acuna, N. Juristo, and A.M. Moreno, “Empha-
sizing Human Capabilities in Software Develop-
ment,” IEEE Software, vol. 23, no. 2, 2006, pp. 94–101.

	 3.	 R. Feldt et al., “Towards Individualized Software En-
gineering: Empirical Studies Should Collect Psycho-

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirementsMaintenance engineer job requirements

Provide, maintain, or update systems documentation to
reflect new applications or enhancements to existing
applications

Provide skills transfer or assistance to junior development
team members to improve product quality and
performance and to ensure standards are implemented

Regularly coordinate or take part in discussions with users
and system analysts in developing and maintaining
applications or enhancements to meet business needs

Contribute to process-improvement initiatives, especially
with regard to programming and IT

Manage and support the maintenance of systems
developed in-house as directed by the system analyst or
the manager, including trouble-shooting, reporting
problems, and recommending, designing, and
implementing sound solutions

Comply with mandated policies and procedures and
contribute to procedural improvements

Coordinate system integration testing and participate in
user acceptance testing

Be willing to learn new technologies and keep on top of
emerging trends in application development; have an
open mind to consider different approaches to solving
technical problems

Figure 5. Mapping maintainers and skills to personality types. Sensing (S) and perceiving (P) types
are best suited to the detail-oriented tasks and constant changes inherent to software maintenance.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

	 computer.org/ITPro 	 13

metrics,” Proc. Workshop Cooperative and Human Aspect
of Software Eng. (CHASE), ACM Press, 2008, pp. 49–
52.

	 4.	 D.B. Walz and J.L. Wynekoop, “Identifying and Cul-
tivating Exceptional Software Developers,” J. Comput-
er Information Systems, vol. 37, no. 4, 1997, pp. 82–87.

	 5.	 E.A. Turley and J.M. Bieman “Competencies of Ex-
ceptional and Non-Exceptional Software Engineers,”
J. Systems and Software, vol. 28, no. 1, 1995, pp. 19–38.

	 6.	 N.L. Kerth, J. Coplien, and J. Weinberg, “Call for the
Rational Use of Personality Indicators,” Computer, vol.
31, no. 1, 1998, pp. 146–147.

	 7.	 D.J. Pittenger, “The Utility of the Myers-Briggs Type
Indicator,” Rev. Educational Research, vol. 63, no. 4,
1993, pp. 467–488.

	 8.	 E. Kaluzniacky, Managing Psychological Factors in Infor-
mation Systems Work, Information Science Publishing,
2004.

	 9.	 L.T. Hardiman, “Personality Types and Software En-
gineers,” Computer, vol. 30, no. 10, 1997, p. 10.

	10.	 L.F. Capretz, “Personality Types in Software Engi-
neering,” Int’l J. Human-Computer Studies, vol. 58, no.
2, 2003, pp. 207–214.

	11.	 G.J. Teague, “Personality Type, Career Preference
and Implications for Computer Science Recruitment
and Teaching,” Proc. 3rd Australian Conf. Computer Sci-
ence Education, ACM Press, 1998, pp. 155–163.

	12.	 J. Dolney, “Designing Job Descriptions for Software
Development,” C. Barry, ed., Information Systems De-
velopment Challenges in Practice, Theory and Education,
Springer, 2009, pp. 447–460.

	13.	 L.F. Capretz, “Implications of MBTI in Software En-
gineering Education,” ACM SIGCSE Bull., vol. 34, no.
4, 2002, pp. 134–137.

Luiz Fernando Capretz is an associate professor and the
director of the software engineering program at the Uni-
versity of Western Ontario, Canada. His research interests
include software engineering, human factors in software
engineering, software estimation, software product lines,

and software engineering education. Capretz has a PhD in
computing science from the University of Newcastle upon
Tyne. He is a senior member of the IEEE, a distinguished
member of the ACM, an MBTI certified practitioner, and
a Professional Engineer in Ontario (Canada). Contact him
at lcapretz@eng.uwo.ca.

Faheem Ahmed is an assistant professor at the College
of Information Technology, United Arab Emirates Uni-
versity. His research interests are software product lines,
software process modeling, software process assessment,
and empirical software engineering. Ahmed has a PhD
in electrical engineering from the University of Western
Ontario. He is a member of the IEEE. Contact him at
f.ahmed@uaeu.ac.ae.

	 Selected CS articles and columns are available 	
	 for free at http://ComputingNow.computer.org.

Table 2. The personality types with the strongest impact on the software life cycle.

	 Software life cycle stages

Personality types 	 System analysis	 Software design 	 Programming	 Testing	 Maintenance

Extroversion (E)	 √				

Introversion (I)			 √		

Sensing (S)			 √	 √	 √

Intuition (N)		 √			

Thinking (T)		 √	 √		

Feeling (F)	 √				

Judging (J)				 √	

Perceiving (P)					 √

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

