A Failure in Teaching Test Driven Design
W. Morven Gentleman

Morven.Gentleman@dal.ca
Halifax, NS, Canada

Abstract

Test Driven Design was incorporated into an algorithms course, not to teach testing nor to teach design, but rather to provide a structure for simplifying grading of programming exercises. In the end, the attempt was a failure: some students regarded prior choice of tests and iterative refinement of code to pass successive tests as a clumsy encumbrance interfering with code production, but many simply seemed incapable of imagining ways in which their implementations could fail.

Context: the course and students
This past term I taught a course “Algorithms for Industrial Engineering” to 36 third year undergraduates in the Department of Industrial Engineering at Dalhousie University. This mandatory course serves dual purposes. The first purpose is to introduce the students to algorithms that will be useful for them to be aware of in their careers as industrial engineers. (This purpose is very different from the purpose of a typical computer science course on design and analysis of algorithms, in that design of algorithms is not a focus here, nor is derivation of algorithm analyses.) The other purpose of the course is to give the students (who have already taken an introductory programming course) an opportunity to improve their programming skills by being exposed to, and being required to implement, more complex computations than those in their introductory programming courses. (This secondary purpose is complicated by the fact that the first two years of the engineering program at Dalhousie are offered at a half a dozen other institutions, so math and coding skills vary widely.) A striking difference between the industrial engineering students and the computer science students I normally teach is that although a few of the industrial engineering students have a personal interest in programming, and most agree that being more adept at programming would be a convenience, none of them believe that programming is essential to their professional careers. Instead they (and the Industrial Engineering faculty) believe that if serious computing is required, they should use commercial packages or that they would be provided with a professional programming assistant.

Syllabus

Test Driven Design and assignment deliverables

Recursion and Iteration: Towers of Hanoi

Data Structures: Stacks, Queues, Lists, Trees,

Traversal: Linear, Depth-first and Breadth-first, Divide and Conquer, Greedy

Sorting and Order Statistics

Searching: Linear, Binary, and Hashing

String Algorithms

Linear Algebra

Linear Programming

Polynomials and FFT

Graph and Network Algorithms

Geometry and GIS

NP Completeness

Multi-threaded Algorithms

Test Driven Design

Test-Driven Design is a process of software development that focuses on first identifying tests to convince the developer that some aspect of the software has been correctly implemented. After the tests are chosen, the software is implemented specifically to ensure that those tests pass. Successive tests enable the software to be incrementally enhanced to pass the next set of tests, as well as all the tests already passed. In this way the software eventually satisfies the requirements for that software as initially defined, and as exposed by implementation challenges and initial usage.

So why use Test Driven Design in this course? The students in this course are not being trained as professional software developers. Moreover, this course is not primarily about testing. In terms of course content, the role of testing in this course is to demonstrate qualitative and quantitative properties of the algorithms presented in class and in the text. The depth of algorithmic understanding for each student can be examined through assignments, midterm tests and final examinations. The level of programming dexterity for each student is best examined by grading the code that the student produced in response to assignments. Reading and critiquing code is time-consuming and tedious, and serious flaws are often missed. The motivation for teaching Test Driven Design was thus primarily to facilitate assessing the developing programming skills of the students, by examining the tests they chose and what they learned from interpreting the test output. Moreover, because Test Driven Design is an effective process of software development, using it also supports the course goals of understanding the algorithms, and improving programming skills.

Test Driven Design was taught by explaining the theory, by illustrating worked examples, and by detailed feedback when grading individual assignments. It was encouraged by assignment grading schemes that awarded up to half the assignment grade for choice of tests, implementation of tests, and interpretation of test run output.

Assignments and Assignment Grading Schemes
Eight take-home assignments were planned over the 13 weeks of the course, but the dragging out the schedule because of late submissions by the students, resulted in only six being graded.

The initial assignment revolved around the traditional Towers of Hanoi problem. In class, the problem was described, then the recursive solution was presented in pseudo-code and as an actual C program, in order to illustrate that for this problem, the correctness of the recursive solution is self-evident, as is the analysis of the number of moves required. The assignment required the implementation of the non-recursive solution, which can be seen to generate exactly the same moves as the recursive solution, but for which correctness is non-obvious, and for which analysis of the number of moves required is obscure. The stopping criterion is complicated, and the choice between possible data structures is not clear. Out of the 10 marks available, the grading scheme for this assignment awarded 2 marks if the submission contained an explanation and test output as well as the solution code, another 2 marks if sensible tests were proposed together with and explanation of why those tests indicate that correctness is plausible, another 2 marks if test results were actually obtained and interpreted.

A later assignment involved implementing and timing various sorting algorithms, to see whether in practice execution time follows the formula predicted by theoretical analysis. Both recursive and iterative implementations of Insertion sort and Selection sort were used, as well as implementations of Heapsort and Quicksort. The data used were vectors of length 16, 64, 256 and 1024 obtained from the standard C library function rand() generator, with the caution that this does not produce good random numbers. Excel was recommended to analyze the timing results. Out of the 10 marks available, the grading scheme for this assignment awarded 1 mark if the submission contained an explanation and test output as well as the solution code, and 0.5 marks for each of the six sorting methods if the test results presented supported the theoretical complexity result for that method (N^2 or N log N) and indicated how do the methods compare in practice (this requires coping with the limitations of timing functionality).

A third assignment measured variations in the execution time for different ways of multiplying two large (128 by 128) floating-point matrices of random data. The triply nested for loops can be written in six different nesting orders, which include inner and outer product formulations of matrix multiplication. Does this make a difference? Recursive formulation of matrix multiplication in terms of square submatrics reduces paging overhead. How much difference does this make? Strassen’s method decreases the number of floating-point multiplications – is this of practical significance for moderately large matrices? Out of the 10 marks available, the grading scheme for this assignment awarded 2 marks for plausible interpretations given for the different timings for different nesting of for loops with conventional matrix multiplication, another 2 marks for whether the interpretation of timing for sub-matrix multiplication as reducing paging was considered, another 2 marks for whether the interpretation of timing of Strassen’s matrix multiplication was convincing, and 2 marks each for whether the recursive conventional submatrix multiplication and the Strassen’s submatrix multiplication was plausible and tested.

The other assignments and their grading schemes had a similar flavor.

What went wrong?

The students learned the theoretical complexity results about the algorithms. Their proficiency in programming dramatically improved. However, the great majority never adopted Test Driven Design. A few did, but did not document their testing. Many only submitted code (clearly not deerived following Test Driven Design), and never submitted any output.

Why?
Discussions with the students who have become good programmers made it obvious that they considered having to follow Test Driven Design to be a cumbersome nuisance. The most common reaction, however, was that the vast majority of the class could not think of anything in their code that would benefit from testing – they could not imagine anything that could go wrong!

