
Software Testing 2 Syllabus Fall 2009 1

SYLLABUS -- SOFTWARE TESTING 2, FALL 2009

Instructor: Cem Kaner

Office Phone: 674-7137

Office Address: Olin Engineering 247

email: kaner@cs.fit.edu

Skype: cem.kaner

Office Hours: Tuesdays 6:15 to 8:00, Thursdays 3:00 to 4:30

Teaching Assistant: Nawwar Kabbani

TA email: nkabbani2008@fit.edu

Start Date: August 18, 2009

Course Credits: 3

Class Times: 5:00 to 6:15 pm, Tuesday & Thursday, Olin EC 228

Final Exam, December 8, 6-8 pm

Required Text:

• Objects First with Java: A Practical Approach Using BlueJ (Barnes & Kolling, 4th
edition), Chapters 1-10, 12, parts of 13 and 14

• Several readings (handouts or electronic copies posted in the Moodle course
site)

Required Tools:

• Java 1.6

• Eclipse 3.5

• Checkstyle (code style)

• Emma (code coverage)

• JUnit (unit testing)

• Subversion

Learning Objectives:

• Relearn basic programming skills through a lens of writing code that always
works -- move from programming to software engineering.

• Adopt industry standard development tools and use them effectively,

• Improve your cognitive skills in basic development, especially problem
decomposition and technical (programmer to programmer) communication

• Learn glass box test techniques

• Familiarity with the agile approach to development lifecycles, and gain some
experience with agile approaches

• Work through exercises, and develop work products, that I think are likely to help
you interview for new positions and do well in your first year on the job

Assessments:

• Multiple choice quizzes (open book) -- 10%. I will drop your worst two quizzes.

Software Testing 2 Syllabus Fall 2009 2

• Homework (several small assignments, to be completed within a few days after
assignment) -- 15%. I will drop your worst three homeworks.

• Assignments (larger individual or group development projects) -- 30%. You
must do all three assignments. (Note: I may drop this to two assignments worth
10% each and add more homeworks, raising the homework percentage to 25%
from 15%)

• Midterm exam (closed-book in-class exam) -- 15%

• Final exam (take-home programming project) -- 30%

• Bonus tasks: In the first two weeks of the course, I will suggest some topics that
I would like students to research and use to create supplementary material for
the course that will help the other students or give a presentation to the class. If
you want to take on one of these tasks, you must sign up for it by September 17.
I will not accept late sign-ups because my experience is that students who pick
up bonus tasks late in the term do a poor job with them. The bonus task will add
between -5 (minus five--for example if you sign up for a task but then don't do it,
or if you plagiarize the work) and +10 points.

CATALOG DESCRIPTION:

SOFTWARE TESTING 2. Explores structural (glass box) methods for testing
software. Testing of variables in simultaneous and sequential combinations,
application programmer interfaces, protocols, design by contract, coverage
analysis, testability, diagnostics, asserts and other methods to expose errors,
regression test frameworks, test-first programming.

DESCRIPTION FOR THIS TERM:

Florida Tech is widely known for its test-related education. At conferences of
testing practitioners, Florida Tech has often been described as the best school
for testing in the United States. The Testing 2 course has been part of the growth
of this reputation. It integrates testing and programming knowledge and skills and
the students in the course do "real" work, creating work products that employers
find impressive.

We focus on programmer-testing, that is, on the types of tests that programmers
create to test their own code. The approach to programmer-testing that we follow
is called Test-Driven Development (or Test-Driven Programming). In TDD, the
programmer creates the program in small increments. Each increment looks like
this:

• decide what functionality you are going to add to the program

• write a test to check whether the functionality was created correctly

• run the test to see what the failure looks like and to confirm that the test
will in fact fail if the functionality is not present

• write the code

• run the test (and all the other existing unit tests for the program under
development)

• fix the code

• run the test (repeat test/fix/test/fix until the code finally works)

• refactor the code (reorganize working code to make it more maintainable)

Software Testing 2 Syllabus Fall 2009 3

• rerun the tests (fix and retest if necessary)

• save the revised code to the source control system

The tools are easy to learn and use. Sometimes a little tedious, but easy.

Technical challenges: Many students face technical challenges in learning this
approach:

• decomposing programs into small tasks (the increments). This is a
critical, basic programming skill. To our astonishment over the past 7
years, graduate students have found this much harder to learn (or to
adopt) than undergraduates (instructors who teach TDD at other
universities tell us their graduate students have similar problems). The
large majority of graduate students who have taken this course have
dropped out or failed the course.

• designing useful tests. Most books on the current generation of unit test
tools focus on how to create and maintain the tests, spending relatively
little time on what tests to create.

Psychological or tactical challenges: Some students have treated this course
as overwhelming and adopted unsuccessful tactics for dealing with it. All three
instructors who have taught the course have seen similar problems. If you fall
into these traps, you should come to Nawwar or me for help, or you should
seriously consider dropping the course:

• Some students are simply unwilling to program in a test-driven
development (TDD) style. TDD is not for everyone, but it's what we are
teaching in this course. If you're going to learn anything in this course,
you have to give TDD a fair chance. The key thing to realize is that, no
matter what task we are doing, we are doing it to illustrate test-driven
development, to extend your skills in test-driven development, and if you
are not doing it that way, you are missing the point of the exercise. If the
program "works" perfectly, but wasn't done via TDD, it didn't achieve the
task that was assigned.

• Some students try to fool us with shortcuts. For example, students
write their code (or copy code fragments from the Net), then add a few
unit tests after the fact. Don't do that. You'll do at least as well if you
submit an incomplete program that is well tested than a more complete
program that lacks most of its unit tests. Some students go further: They
sometimes dummy up some phony tests to make it look as if that part of
the program had been tested and passed. This is dishonest--it
misrepresents the state of your code. If Nawwar or I see this in code
that we read, we will stop reading and zero the assignment. If we see this
in the final exam, we will zero the exam.

STRUCTURE OF THE COURSE

We follow two parallel streams

• Lecture-driven tour of test-driven programming and test design

• Textbook-driven review of Java programming, applying TDD and good test
design to the material

We assign tasks (homework, quizzes, assignments) from each stream

Software Testing 2 Syllabus Fall 2009 4

• exercises from the textbook

• exercises based on common interview questions for programming jobs

• exercises based on issues raised in the lectures

Tentative list of lecture topics

• Overview of software development

• Programmer testing. Basics of jUnit

• Refactoring (1)

• Problem decomposition

• Source control systems, using Subversion

• Testing control structures (1)

• Basics of structural coverage

• Testing data handling (simple inputs, combinations, results)

• Testing Boolean expressions

• Testing lists and sorts

• Exception handling and testing exceptions

• Assertions and probes

• Testing control structures (2), with exceptions, assertions, and probes

• Communicating the intent of your software

• Generating random numbers

• Using simulations in testing

• Using algorithms and sample code from the web

• Source code analyzers

Software Testing 2 Syllabus Fall 2009 5

Lecture Topic List Updated October 2009

Topic Total Done To
Come

Overview of software development 1 1

Programmer testing. Basics of jUnit 1 1

Refactoring 3 3

Problem decomposition 1 1

Source control systems, using Subversion 1 1

Testing control structures 3 2 1
Basics of structural coverage 1 1

Testing basic data structures 3 2 1
Testing lists and sorts 1 1

Exception handling and designing tests that include
exception-handling 1 1

Parameterized test cases 1 1

Creating test files for higher volume processing of test
cases and expected results 1 1

Generating random numbers; applying randomness in
software testing 6 5 1

Testing data handling (simple inputs, combinations,
results) 1

1

Testing Boolean expressions 3

3
Using random perturbation of test cases to create
higher-volume tests 1

1

Developing oracles for automated tests 2

2
Using simulations in testing 1

1

Applying what we know to classic programming
problems 4

4

Using algorithms and sample code from the web 1.5

1.5
Working with assertions and probes 3

3

GRADING POLICIES

• I will not accept late quizzes or late homework. We want to grade these quickly
and get them back into your hands quickly--delaying for tardy students makes
that much harder. I know that everyone has critically busy schedules or personal
challenges at some point that would normally force you to hand stuff in late. To
help you cope with these, in this course, you can drop a couple of quizzes and
three homeworks.

Software Testing 2 Syllabus Fall 2009 6

• Late assignments lose one letter grade (10%) per day. I will not accept late
assignments more than 5 days late.

• I will not accept late exams.

• Most assignments (including homework and exam questions) require you to use
test-driven development. You must submit your tests with your code. Grading of
the code includes grading of the tests.

o Unless the assignment specifies otherwise, code that does not
demonstrate the application of TDD will get a failing grade (0)

o If the code doesn't compile successfully, I will assign a grade of zero.

o If there are no unit tests, I will assign a grade of zero.

o If the code fails any of its unit tests will I will normally assign a grade of
zero. Exception: If you can't get the code to pass a test (e.g., you run out
of time before the assignment is due and it still has a bug), include a note
with your assignment that describes the failure and the steps you have
taken to try to debug it. We will grade that bug gently, and if your
debugging strategy is good, we will award points for it.

• To pass the course, you must have a passing grade on the exams. The exams
together are worth 45% of your grade. To pass CSE 4415, your total exam score
must be 27/45 (D). To pass SWE 5415, your total exam score must be 31.5 (C).

ACADEMIC INTEGRITY

• Homework and Assignments

o You are welcome to use ideas, algorithms, or even code from books or
the web. If you use someone else's work, you must reference it. This
is true whether you are using work from a web page, the course
textbook, or some other source. Failure to give credit to your
sources is plagiarism and will be handled according to the
University's Academic Integrity policies.

o You may consult other students (members of this class and students not
currently enrolled) when preparing an assignment. Please give credit to
each helper by including in the assignment the person’s name and a brief
description of how he or she helped you. If you are copying any code
from her or him, specifically identify that code. If you receive help but
submit work that fails to acknowledge your helpers, I will zero your
paper and may take additional action in accordance with the
University’s academic integrity policy.

o You are welcome to do quizzes, homework, and assignments in pairs. If
you write homework or an assignment together, submit it as one
submission and make both of your names very visible.

 If you work with the same person several times, I will ask you to
select a different partner for your next tasks. Over the term, I'd like
you to pair up with at least three people.

• Quizzes

o Quizzes are open book

• Midterm exam

Software Testing 2 Syllabus Fall 2009 7

o The usual rules governing cheating in closed book exams apply to the
midterm.

• Final exam

o You are welcome to consult books or published material on the web. You
may not get help from a live human, whether they are members of this
class or not.

o As with homework and assignments, if your exam uses someone else's
code or ideas, you must reference them. Failure to give credit to your
sources is plagiarism.

