
9th Workshop on Teaching Software Testing, Melbourne, Florida, January 2010

Experiences in using TDD as a key component in laboratories
when teaching hardware / software co-design of embedded systems.

Presenter: Michael Smith,
Electrical and Computer Engineering,

University of Calgary,
Calgary, Alberta, Canada

Email: smithmr @ ucalgary.ca

James Miller,
Electrical and Computer Engineering,

University of Alberta,
Edmonton, Alberta, Canada
Email: jm @ece.ualberta.ca

Abstract: This paper provides background on why the
presenter decided that taking a test driven develop-
ment (TDD) approach offered advantages when
teaching hardware / software co-design. A discussion
is provided of the issues that arose while using TDD
ideas with 3rd and 4th year University students design-
ing and testing software interfaces for embedded
system peripherals.

Introduction
This paper provides details of the personal experi-
ences of a computer engineering trained instructor
attempting to introduce test driven development
(TDD) ideas to assist 3rd and 4th year University stu-
dents to a better understanding of the concepts behind
the “hands-on” laboratory components of an embed-
ded system interfacing and a computer architecture
course.

Background
Having used and taught microprocessors since the
80’s, the presenter’s attitude towards embedded soft-
ware development drastically changed on becoming
aware of the Personal Software Process (PSP) [Hum-
phrey, 1997]. One key PSP epiphany remained with
the instructor long after he was no longer formally
recorded PSP metrics. If he was having a hard time in
designing, coding, testing and releasing more than 30
lines of code per hour; should there be any expecta-
tion that a student’s productivity level be any higher?
This led to a major modification of the instructor’s
attitude of what could be accomplished, code-wise, in
laboratories, assignments and exam questions.
 A second issue that arose from this brief foray with
PSP, was the realization that each time the course
laboratory notes were updated to cover a new “term
project”, the instructor’s code defect / error rate was
initially (embarrassingly) high until the instructor
once again remembered the peculiarities of the de-
velopment environment, processor architecture and
peripherals. However, such familiarity will not occur
for the students taking a new course till the last part
of the term. The late gaining of familiarity is espe-
cially true for some student since the laboratory ex-
perience involves a combination of software and

hardware with which the students are totally unfamil-
iar. Thus fixing defects can be expected to impose a
considerable time burden on the students; both in this
and other courses involving code development.
 A possible solution to this problem arose when this
presenter was made aware of test driven development
(TDD) by an experienced industrial software devel-
oper who returned for graduate studies under the pre-
senter’s supervision and that student’s software engi-
neering trained co-supervisor [Geras et al. 2004].
The remaining sections of this paper detail the steps
used by the instructor to move the perceived business
advantages of using TTD [e.g. Sanchez et al., 2007]
into the new environment of designing and testing in
embedded systems during 3rd and 4th year University
courses.

Initial progress with introducing
Embedded TDD

The Schulich School of Engineering program has
three degree streams – Electrical Engineering, Com-
puter Engineering and Software Engineering. The
first attempt at using embedded test driven develop-
ment (E-TDD) was within the electrical engineering
stream with students exposed to minimal formalized
testing during their program.
 Three issues arose immediately: (A) a lack of stu-
dent acceptance for the real need for testing for a
course that involved only 5 (hands-on) laboratory
periods (15 scheduled hours)); (B) a lack of a suitable
testing framework for embedded development; and
(C) a corresponding lack of mentorship for both in-
structor and students on how to use the TDD ap-
proach within the new environment.
 The instructor’s existing approach was to treat the
course laboratories as incremental, interdependent,
prototypes directed towards a common final term
project. It was felt that continuing this long-term ori-
entation towards the laboratories would get the stu-
dents to accept the need for testing in this course
more than with their other early computing courses.
The second issue was solved by identifying a light
weight xUnit framework – CppUnitLite [Feathers,
2004] – that (i) looked easy to learn; (ii) looked small

9th Workshop on Teaching Software Testing, Melbourne, Florida, January 2010

enough to be compiled and loaded within the limited
memory of the standard embedded system evaluation
board; and (iii) was non-scripted so that the instruc-
tions for the system to perform the tests did not dis-
rupt the expectations of being able to develop code
for a real time (time critical) system. Initial experi-
ences with the resulting Embedded UnitLite running
on an Analog Devices Blackfin (ADSP-BF533)
evaluation board were reported in “embedded sys-
tem” commercial magazines [Smith et al. 2005a] and
at an Agile conference [Smith et al, 2005b].

Further Embedded TDD development
Two things prevented Embedded UnitLite from end-
ing up as an instructor’s passing whim. The first was
the chance reading of a comment that demonstrated
the common concepts between the use of the scien-
tific method in other aspects of engineering and the
use of TDD in code development [Mugridge, 2003].
This suggested the possible easy acceptance of the
TDD concepts by students because of existing famili-
arity. The second was the fact that a major defect in
the actual processor silicon was uncovered by the
first 3rd year computer engineering class that was
trained to use a prototype automated testing frame-
work adapted for the embedded environment (see
Fig. 1).
 Given that this silicon defect had been unrecog-
nized by industrial developers working with “tens of
thousands” of the processor, it was considered that
Embedded UnitLite showed considerable potential as
both a teaching and an industrial development tool.
 With the instructor’s and student’s interest in bio-
medical engineering, research work was undertaken
in applying TDD across all four stages of an extreme
programming inspired (XPI) life cycle for biomedical
instrument development [Chen et al., 2005] [Miller et
al., 2006], [Smith et al., 2009a, 2009b].
 In addition, the testing framework was extended to
a wide variety of processor families to better support
its industrial application and facilitate its use across a
wide range of student 4th year design embedded pro-
jects.

Initial Educational experiences
Initial educational experiences with the prototype
Embedded Unit have been published [Smith et al,
2005a] [Miller and Smith, 2007]. The prototype Em-
beddedUnit permitted the standard basic testing of
algorithms: e.g. CHECK macros to perform black
box testing on returned or modified variables. In ad-
dition, hardware assisted embedded specific exten-
sions were added to track whether required low-level
processor activities were performed by student’s who

were not experienced in concepts associated with the
importance of test-coverage. For example
WATCH_MEMORY_RANGE macros, included as
part of “customer provided acceptance tests”, were
used to determine whether the students were properly
initializing memory mapped external device registers
to zero. This was intended to identify coding that
would lead to immediate system crashes if students
assumed that these control registers of the evaluation
board peripheral retained their default (cold-start)
zero values when used across multiple downloads of
their programs to the evaluation board.
 In hindsight, it has been recognized that there was
always the potential for using the existing
CppUnitLite testing framework within other electrical
engineering courses directly involving programming
or when students handle team design projects. This
offered the possibility of dramatically increasing the
exposure to testing concepts using one testing
framework. However considering the over-loaded
course content present within engineering programs,
the practical application of TDD concepts in other
courses never happened.

Recent Educational experiences
One of the biggest difficulties when adapting and
adopting TDD into the teaching environment are the
equivalent of that expected in a similar situation in-
dustry – the learning curve associated with a new
“formal” testing approach. Compounding this prob-
lem are the additional educational issues of (a) the
students are unfamiliar with testing; (b) the students
are experiencing a learning curve associated with
using a industrial strength development tool envi-
ronment rather than a command-line based gcc com-
piler running within Unix; (c) the students are not
using code to control a simulation but a real embed-
ded system that will crash and lock-up if not treated
correctly; and the most important (d) the time associ-
ated with attempting to successfully complete five
other engineering courses in the same term.
 To reduce the learning curve and time commitment
we developed a GUI that connected to Analog De-
vices IDE to better automate the production and in-
terpretation of the tests in the new embedded envi-
ronment (see left side of Fig. 1).
 In addition, we modified the testing environment to
provide the ability to report on “Test successes” as
well as the standard “Test failures”. We would rec-
ommend that all testing frameworks used in teaching
or initial industrial training be modified to support
this mode of operation. This mode appeared to moti-
vate the students to use the testing framework to pro-
duce “many” tests during the initial laboratories.
However, in the later labs involving regression test-

9th Workshop on Teaching Software Testing, Melbourne, Florida, January 2010

ing, this enthusiasm for reporting success became
problematic. It appeared that students were not seeing
new failing tests amongst the large number of re-
ported successes. It was difficult to convince some
students of the advantages of turning off this mode of
reporting test metrics even when it was pointed out
that they could still their success rates reported in a
simple fashion in the “STOP-CAUTION-GO” traffic
light bar present in the GUI (see Fig. 1).
 Several students independently made an observa-
tion that has been reported many times in the litera-
ture – the futility of using an automated testing
framework when the test code needed to generate the
results used for testing was essentially the same as
the code under test. This is particular true for the
short code segments that are typically needed to ini-
tialize the embedded device peripherals. The problem
was enhanced by the desire of the instructor to ensure
that the student did not need to write more 40 -- 50
lines of code / hour across the 3 hour laboratory ses-
sion. This was considered a reasonable extension to
the instructor’s own 20 lines or code per hour capa-
bility given that the students were presented with a
nearly complete design and that a certain number of
remaining code defects could be tolerated in a proto-
type developed during the limited laboratory time
available.
 In principle this issue would be reduced if the stu-
dent laboratory pair split its effort with one student
writing the test and the other student writing the
code. However given the learning curve associated
with the new embedded system course material, the
team members were collaborating so closely that any
misconceptions would remain common and reflected
in both code and test.
 Given the time constraints and lack of student ex-
perience, a common observation was that the students
were unable to conjure up a mental model of what
they were attempting to accomplish. This meant that
even when the students wrote tests that found faults
in the system, they were unable to interpret the re-
ported failures to solve the system problems.
 This inability to interpret and then respond to the
meaning of the reported failures had an unanticipated
impact on the use of prebuilt (customer) acceptance
tests provided by the instructor to cut down the
physical amount of typing necessary to develop a full
range of tests. The students were taught that the test
suite was a living document subject to upgrade as
additional knowledge about the system was gained.
Therefore the students would consider it reasonable
to modify the tests to pass given that the students
now thought they understood the low level character-
istics of the processor interface.
 These problems were less evident in the 4th year
course which explored the impact that processor ar-

chitecture had on the developer’s ability to ensure
real-time performance when implementing typical
digital signal processing algorithms (DSP). In this
situation, there is a wide range of data available for
testing, with the students familiar with DSP ideas
from other courses. In addition, the tests were used in
more of a “refactoring mode for speed’ with the same
tests repeatedly used to validate a wide range of algo-
rithm implementations.

Conclusion
 In this paper we have discussed the personal ex-
periences of a computer engineering trained instruc-
tor attempting to introduce the advantages seen in
business world application of TDD concepts into the
environment of embedded system development. Con-
siderable successes were found during laboratories,
but the lack of mentorship (prior examples) is still
considered a major factor in limiting the instructor
ability to use properly use TDD to full advantage.
 The embedded system course discussed in this
paper has recently become a required course for
computer and software engineering students. It will
be interesting to watch whether the students’ attitude
to using the EmbeddedUnit testing framework
changes since these new groups have both been ex-
posed JUNIT while developing Java code.

Acknowledgements
The authors acknowledge the financial support from
Analog Devices (US), University of Calgary and
NSERC, the Natural Sciences and Research Council
of Canada. Mike Smith is Analog Devices University
Ambassador. Feedback was obtained from many un-
dergraduate students who have used Embedded
UnitLite during ENCM415, ENCM511and
ENCM515 courses at the University of Calgary, with
particular thanks to R. Brey, M. Hafez, and J. Woehr.

References
[Geras et al., 2004] A. Geras, A, M. R. Smith and J. Miller.

“More or Different University Testing Courses: The Im-
plications of a Recent Survey of Alberta Software Or-
ganizations”, I.E.E.E. Canadian Conference on Com-
puter and Software Engineering Education, Calgary,
Canada, March 2004.

[Chen et al., 2005] J. Chen, M. Smith, A. Geras, J. Miller.,
“Making Fit/FitNesse Appropriate for Biomedical Engi-
neering Research,” Proc. 7th Int’l Extreme Program-
ming and Agile Processes in Software, LNCS 4044,
Springer, 2006, pp. 186−190.

[Feathers, 2004] CppUnit Wiki;
cppunit.sourceforge.net/cppunit-wiki. last accessed
January, 2010.

[Humphrey, 1997] W. S. Humphrey, “Introduction to the
Personal Software Process”, Addison-Wesley, 1997.

9th Workshop on Teaching Software Testing, Melbourne, Florida, January 2010

[Miller et al., 2006] J. Miller, M. Smith, S. Daenick, J.
Chen, J. Qiao, F. Huang, A. Kwan, M. Roper, “An XP
inspired test-oriented life-cycle production strategy for
building embedded biomedical applications”, TAIC
PART, 2006.

 [Miller and Smith, 2007] J. Miller, M. Smith, “A TDD
Approach to Introducing Students to Embedded Pro-
gramming”, The 12th Annual Conference on Innovation
Technology in Computer Science Education (ItiCSE),
2007.

[Mugridge, 2003] R. Mugridge. “Test driven development
and the scientific method”. Proceedings of the Agile De-
velopment Conference, 2003.

[Sanchez et al., 2007]. J Sanchez, Williams L., Maximilien
E.M., “A Longitudinal Study of the Use of a Test-Driven
Development Practice in Industry”, Proc. Agile 2007
Conference, IEEE CS Press, 2007.

[Smith et al., 2005a] M. R. Smith, A. Martin, L. Huang, M.
Bariffi, A. Kwan, W. Flaman, A. Geras, J. Miller, “A
look at test driven development (TDD) in the embedded
environment: Part 1 and Part 2”, Circuit Cellar maga-
zine, Vol. 176, pp 34 – 39, March 2005; Vol. 177, pp
60 – 67, April 2005.

[Smith et al., 2005b] M. Smith, A. Kwan, A. Martin, J.
Miller, “E-TDD – Embedded Test Driven Development:
A Tool for Hardware-Software Co-design Projects”, 6th
International Conference on eXtreme Programming and
Agile Processes in Software, 2005

[Smith et al, 2009a] M. Smith, J. Miller, L. Huang, A.
Tran, “A More Agile Approach to Embedded System

Development”, IEEE Software, Vol. 26 no. 3, pp 50-57
May/June 2009.

[Smith et al, 2009b] M. Smith, J. Miller, S. Daeninck, “A
Test-oriented Embedded System Production Methodol-
ogy”, Journal of Signal Processing Systems Volume 56,
Number 1, 69-89, July 2009.

About the authors

Mike Smith is a full professor in Electrical and Computer
Engineering at the Schulich School of Engineering, Univer-
sity of Calgary, Calgary, Canada. His research interests
can be described as “Finding reliable methods for (A) de-
veloping biomedical algorithms and then (B) moving the
developed algorithm down to a biomedical instrument (em-
bedded systems)” For links to lessons and laboratories us-
ing EmbeddedUnit in 3rd and 4th year Embedded system
courses -- see enel.ucalgary.ca/People/Smith

James Miller is a full professor in Electrical and Computer
Engineering at the University of Alberta, Edmonton, Can-
ada. He has published over one hundred refereed journal
and conference papers on Software and Systems Engineer-
ing (see www.steam.ualberta.ca for details on recent direc-
tions); and regularly appears in the Journal of Systems and
Software list of “top scholars”. He currently serves on the
program committee for the IEEE International Symposium
on Empirical Software Engineering and Measurement; and
sits on the editorial board of the Journal of Empirical Soft-
ware Engineering.

Figure 1: Screen capture of the Embedded-Unit tests for initializing the Blackfin core timer via two apparently
equivalent C++ routines (Lines 11 – 12 and 16 -- 17). Undocumented silicon level behaviour resulted in one assert
unexpectedly failing (Line 29), and another unexpectedly passing (Line 30). (From [Smith et al, 2009a]) .

