Proposal for 1 hour presentation at WTST 6 on:

Teaching Testing of Interrupt and Exception Handling Code

W. Morven Gentleman

Morven.Gentleman@dal.ca
Dalhousie University

Halifax, NS Canada

This presentation has no special equipment needs. Written material will be provided to detail some of the examples of testing that will be discussed.

Personal

I am a professor n the Faculty of Computer Science at Dalhousie.

Since obtaining my PhD 40 years ago, I have spent about half my career in academia, and about half my career in industry or in government labs addressing industrial problems.

I have done research in many areas of computer science, especially in real-time and embedded systems that form the basis for this topic. For the past twenty years my research focus has been software engineering.

Context of Topic

Programming of interrupt handlers and exception handlers differs from conventional programming in that control flow occurs not by one of the four normal constructs of

1. sequential execution

2. conditional execution

3. loop execution

4. procedure invocation

but instead occurs as a consequence of an event, possibly synchronized to prior execution but possibly unrelated to it. There is some evidence that bugs in such code are more common and more serious than in more conventional code. This difference in programming leads to different kinds of bugs from those in conventional software, and calls for different testing techniques to find these bugs. Because testers and programmers often lack experience with the interrupt handlers and exception handlers, teaching about testing interrupt handlers and exception handlers poses some challenges in guiding students to establish an appropriate mindset with which to approach the activity.

Interrupt handlers and exception handlers appear within a specialized niche of the software development industry, but it is not an insignificant niche. They are fundamental to operating system development. They are essential to making use of independent devices and hence are central to the device drivers that third party device vendors deliver with their hardware products. However, the largest part of the niche is embedded systems, computer systems dedicated to the monitoring, control and exploitation of specific physical systems. Embedded systems may be shipped in large volume under cost constraints requiring them to be small and simple, such as control software for a microwave oven or DVD player, they may be shipped in large volume yet required to be sophisticated with stringent performance demands such as cell phone software, or they ay be complex one-offs required to make use of some unique and elaborate physical equipment such as a telescope or a nuclear reactor. Because the computer system is dedicated to operation of the physical system it controls, embedded systems often lack sufficient excess resources to support testing, e.g. they may have insufficient memory for the application and a test harness, or the user interface may be too specialized for the tester to be able to use to trigger tests and to observe or to record test results.

Because interrupt handlers and exception handlers are so core to these systems, testing them is often not merely a matter of unit testing, but contractually a fundamental part of system and acceptance testing.

Terminology

In order to discuss interrupt handling and exception handling, it is useful to first to establish some terminology.

With regard to Interrupts (events asynchronous with processing)


Disambiguating interrupts: hardware usually attempts to identify the interrupt

source, but interrupt levels, interrupting device codes, or interrupt vectors



are often shared by multiple devices, or a single device may cause

interrupts for qualitatively different purposes, so software needs

to distinguish which device or sub-device actually caused the interrupt

and what service is required 

Spurious Interrupt: an interrupt from an unrecognized interrupt source


Unanticipated Interrupt: an interrupt which is not expected in this context
Deferred interrupt handling: interrupts not processed immediately, because of

interrupt masking or preemptive priority


First Level Interrupt Handler and Second Level Interrupt Handler, 

(also upper halves and lower halves): on some hardware and in some

operating systems, interrupt handlers are divided into two parts, only the

first part of which is triggered by the hardware interrupt, the second part

being scheduled by the first part as a high priority software thread to run

outside the hardware interrupt processing levels

With regard to Exception Raising (events synchronous with processing, but note that an

event synchronous with respect to one thread may appear asynchronous

with respect to a different thread)


An Exception is raised when normal processing for an operation fails. This does

NOT necessarily mean that the operation fails. Normal processing may only be appropriate for a limited domain of the possible input data for the operation, or for a limited range of results from the operation. Alternative processing within a Domain Exception Handler may facilitate computing the operation for an extended domain. Alternative processing within a Range Exception Handler may facilitate extending the definition of the operation so that useful results are obtained for a broader domain. An exception is NOT necessarily an error in the input data for the operation, much less a programming error in the implementation of the operation. It is merely an indication that normal processing should not continue, and its use often simplifies the code for the normal case.


Classifying a valid result is another important use for exceptions.


Monitoring intermediate results or supplying additional ancillary information for

valid or invalid results is yet another use for exceptions.

With regard to Exception Handling (i.e. code activated in response to an exception

that has been raised)


Defining capabilities of Exception Handling:

The ability to associate a handler with an exception in an operation,

The ability to associate different handlers with different invocations of an operation



The ability to resume an operation after appropriate action



The ability to terminate an operation



The ability to retry the operation



The ability to associate a parameter with an exception

· NOTE: deferred processing is a possibility not directly discussed. It may be particularly important in real-time systems and multi-thread systems.

· N??OTE: in the presence of concurrent execution, exception handling may be appropriate asynchronously in a thread other than the thread raising the exception. In particular, interrupts or exceptions in one thread may change state (ready or blocked) of another thread, may change thread execution priority, or even destroy or create threads.

Typical errors in Interrupt and Exception Handlers

Interrupts

No code

Critical races (race conditions)

Activation too late or too early

Missed interrupts


(NOTE: disambiguating shared interrupts may not detect multiple

activated interrupts)

Interrupts not cleared


(Edge vs. Level triggered interrupts or interrupts as messages)

Interrupt masking, or inappropriate relative preemptive priority setting, 

may defer interrupt handling inappropriately, or may allow interrupts

inappropriately (Modcomp II or IV selectinput and selectoutput)


Power management: low power state may inhibit interrupt handling


Address space switching, interrupts transfer to supervisor mode, IO only

permitted in supervisor mode

Improper software runtime interface (usually OS e.g. Windows NDIS)

Differences between processor speed, memory speed, 

and interrupt controller register speed or device register speed result in

data transfer failures.

Exceptions


Exception not raised when appropriate, or raised inappropriately

· forgetting or not understanding what exceptions an operation can raise,

· or not taking due consideration of these exceptions

Exception handler taking inappropriate action

· association of wrong handler with particular invocation

· association of handler with wrong exception or wrong instance of exception

· attempting to resume an operation that cannot be resumed

· attempting to terminate an operation that does not expect to be terminated

· when an operation is terminated, ensuring cleanup leaves a state that will not force a subsequent exception

· violating an exception parameters access constraints

Language Features

Pl/1. Rexx, Clu, Ada. Modula-3, C++, Java, C# and others all claim to provide exception handling, and some even claim interrupt handlers can be written in the language. In fact, there are serious shortcoming in each language, and these shortcoming result in interrupt handlers and exception handlers being compromised by circumlocution, being implemented by conventions rather than language facilities, or being implemented outside the language (perhaps in assembler). A common limitation is that exception handling is restricted to the capability of aborting the operation, possibly popping many levels of the activation stack. They do not provide detailed information about the exceptional situation (e.g. on subscript out of range, what exactly was the subscript value? Goodenough proposed that parameters associated with exceptions would address this, but he did not elaborate). They do not support correcting the situation and continuing. They confuse the issue of program errors (bugs) with the issue of domain limitations, such as operator input that is outside what constitutes normal processing.

Black Box vs. White Box vs ?

Knowing what situations warrant experimental investigation may be difficult in black box context.

Triggering the interrupt or exception situation in black box situation.

Traditional white box approaches, such as coverage, may not expose errors, however a white box approach can suggest situations to investigate.

Showing a critical race does NOT exist is a different kind of experiment.

Testing Tools

Current GUI testing tools are rarely useful for testing interrupt handlers or exception handlers. Instead we use:

Simulators and emulators to reproduce the environment in which the handlers operate, or to instrument and control the execution of the handler.

Hardware monitoring tools, such as network analyzers or In-Circuit Emulators, especially

using sequential triggering. . Probes to trigger events.

Hardware or software circular history buffers to log selected actions and intermediate

results.

Bit vectors to record where in the code control has been, or more importantly where it

hasn’t been.

Debugging tools used to set up situations and trigger events, as well as to monitor

consequent actions.

Virtual Machine technology: Virtual PC and VMWare facilitate controlled and,

instrumented execution of machine level code, decoupling emulation time from

real time. JVM and CLI provide a byte code instruction set that can be augmented

for instrumentation.

Audit routines repeatedly traverse data structures performing consistency and validity

checks. They may not catch errors at the instant the bug is executed, but they can

be designed not to interfere with real-time constraints, and they can detect bugs

incurred by multiple cooperating threads.

The teaching challenge

The biggest problem by far is getting students to think of all the things that realistically can go wrong. The problem of getting them to figure out how to use the tools to detect and isolate bugs in interrupt or exception handlers is easier and more fun. Although a commercial course to teach professional testers about this specialty is conceivable, this presentation envisions a module within a traditional testing course or a real-time and embedded systems course.

