Exploratory Testing with Dice
[image: image1.png]

A software testing exercise
This exercise uses dice to model various aspects of exploratory testing and problem-solving approaches.

The General Description

Under the default rules, the game is played as follows:

· The player rolls some number of dice.

· The player says a number. This has two functions. The number is a prompt to the instructor that the player is ready, and the number should also be a prediction of what the instructor will utter in return.

· The instructor observes the dice, and utters the correct number according to some principle.

· The player keeps rolling and guessing, and the instructor keeps providing a number in reply, until the player can reliably predict the number.

The general object of the game is for the player to figure out what determines the number uttered by the instructor after each roll.

The Default Principle

The default principle is known as “Petals Around the Rose”. In the original version of the puzzle, the players are told three things before rolling the dice:

1. The name of the game is "Petals Around the Rose".

2. The name is important.

3. The answer is always an even number.

When asked any question, the instructor answers with the three rules, and doesn’t reveal any other information.
In our version of the exercise, we follow a somewhat different path. We tell players that we’re supplying rules, but we also specify that we consider it okay to break the rules. We then demonstrate the game to the players; we roll five dice (without specifying that that’s a rule); we tell players to utter a number to prompt us to provide our number (without specifying that that’s a rule), and we tell players that the result from the roll of five dice is always an even number between 0 and 20. We then repeat that it’s okay for players to break the rules. We don’t provide the first two clues. If someone asks for more information, or asks the name of the game specifically, we will reward them for asking by giving them the first clue above.
The Default Solution

This principle is based on the idea that the central pip (dot) represents a rose, and the pips surrounding the centre of the die represent petals.
	[image: image2.png]

	[image: image3.png]

	[image: image4.png]

	[image: image5.png]

	[image: image6.png]

	[image: image7.png]

	A Rose with no Petals
	Two Petals, but no Rose
	Two Petals around the Rose
	Four Petals, no Rose
	Four Petals around the Rose
	Six Petals, no Rose

	0 points
	0 points
	2 points
	0 points
	4 points
	0 points

After each roll, the instructor sums the total point value for each of the dice. Thus if the player rolls two 3s, one 5, and two 6s, the total score is 2 + 2 + 4 + 0 + 0, or 8.
Note that, using the default principle and playing by the rules, the number will always be an even number between zero and twenty; the highest possible score is five 5s, or 4 + 4 + 4 + 4 + 4.
For the Petals Around the Rose principle, the exercise is best performed with multiple colours or shapes of dice. The various colours and shapes are a red herring, intended to add complexity to the exercise.
Running the Exercise
The challenge in solving the exercise is in determining the principle without much additional information. Asking questions can provide some information, but the instructor encourages players that the way to solve the problem is to devise experiments, or tests, that will reveal the principle. Does the principle involve counting the dice? Counting certain dice? Does the position of the dice matter? Does colour matter? Does anything else matter? Is there other information available? Are there questions that the instructor will answer? In each case, the instructor suggests that a test will reveal more information, but doesn’t specify the nature of the test. If the instructor is feeling especially charitable, she may reveal the name of the principle without being asked, or she may suggest cheating; otherwise, players are encouraged to test their way out of their confusion by rolling the dice, making a prediction, and hearing the result.
Isomorphism

In running the exercise using the default principle, we began to notice that players were providing several solutions that are isomorphic (that is, similar in form and structure) to the actual principle, count the pips around all central pips. We’ve observed three variations: a) use a table-based solution, where 1 = 0, 2 = 0, 3 = 2, 4 = 0, 5 = 4, 6 = 0, and sum the values of all the dice; b) take the value of each odd die and subtract one, and then sum the results; c) take the sum of the values on all the odd dice; then subtract the number of odd dice. For an extra challenge, we began to give a different set of dice to the players who believe that they have solved the puzzle; this set had numerals, rather than pips, on the faces. Since there are no petals and no roses in this set, the value for every die is always zero, and therefore the sum of the five dice is always zero as well. This causes confusion for a time; then players begin to recognize the pattern.
Followup

We end the game with a debrief, in which we introduce some of the ideas behind the game and the observations that we’ve made during this run of it. Typically this involves an explanation of the principle (for the testers who didn’t solve the puzzle); providing some background information about the game; noticing and appreciating useful approaches that people tried, and suggesting others. We also suggest that players can continue the game amongst themselves and with others by inventing new principles and patterns.
Instructional Objectives

There are several instructional objectives for the exercise. We encourage testers to follow the heuristic approaches to solving testing problems:
· asking questions about the rules and constraints

· where feasible, ignoring the constraints

· considering ways to take control of the system

· bending and manipulating the rules of the game

· asking questions about the context

· learning to run tests randomly and rapidly when trying to identify new patterns

· defocusing and observing many factors at a time, when trying to see a new pattern

· focusing and concentrating on one factor at a time, when trying to narrow down some pattern

· observing aspects of the dice other than the values on the top of the dice

· observing aspects of the game other than the dice

· recognizing that success (or failure) may be partly a matter of luck

· recognizing that a correct answer might be isomorphic to “the” correct answer, and that sometimes an isomorphic answer is good enough for some testing problems

· sometimes an isomorphic answer isn’t good enough for some testing problems

· understanding that failure to solve the problem is forgivable

· recognizing that a desire for testers to be perfect is unreasonable

· understanding that failure to solve one problem in one context still represents a pathway to solving similar problems

· recognizing that, in every testing problem, there are clues and red herrings

[the italicized section here needs work]

In solving the puzzle, it helps to think like an expert tester. Most people would concentrate on trying to find patterns within the given constraints. Many would take notes and gather data. Expert testers do that, but they use additional approaches, too.
Note that it might be possible to cheat, or to do things that you have believed to be forbidden or “outside the rules” of the game; in fact, permission is explicitly given to break the rules. An active investigator won’t necessarily take at face value something that someone told him; an investigator will run tests and checks to verify the information for himself or herself. Bugs don’t respect rules, so we shouldn’t feel bound to do so.

Considering asking questions about the context in which the game might be played. Such questions might help you to determine things about the rule. Consider everything you know about the puzzle and treat it as a potential clue. For example, is the name of the puzzle significant? If not, why does the puzzle have a name at all? Are the other sources of information about it?
[the italicized section here needs work]

Observations about the game

Dice work really well to model an exploratory testing problem. Dice afford the opportunity to use both random and specific inputs; they can be easily manipulated, and there are essential unlimited ways to vary the exercise with varying levels of difficulty.
It’s easy to do random testing with dice. Random testing—that is, rolling a number of times without manipulating the dice—shows quickly that the result is not determined simply by summing the face values of the dice. A random test is also a good way to disprove a hypothesis about a particular pattern. In other exercises, we’ve observed that people exhibit many kinds of subconscious bias when they believe that they’re doing “random testing”, but dice are neatly non-deterministic; it’s hard to bias them when you roll them.
Random trials in a testing context take advantage of the Many Factors At a Time, or MFAT heuristic—vary as many factors as possible, and then examine the input and output values to try to identify some pattern. This approach is powerful, in that allows us to observe patterns that we might not observe with more planned approaches; but this approach is also fallible, in that we may not recognize patterns when we use an insufficient number of trials, when we observe an insufficient number of variables, or when we have insufficient means of manipulating and observing the output values to allow the patterns to emerge.
Random testing is a good way to confirm a theory about a pattern. When you are pretty sure that a focused approach has provided you with a pattern that you’re sure about, end with the
“defocusing flourish” heuristic—a successive run of three or four random tests in which you apply your hypothesis about the pattern, to see whether it bears out. It’s unusual to have a run of several correct guesses when the rolls are random. Unusual, but not impossible—so the defocusing flourish is fallible like any other heuristic.
Simplifying the problem is easy with dice. When players choose to do so, it’s easy to simplify the problem. A typical pattern starts by the players a) manipulating the dice—for example by setting the dice to 1, 2, 3, 4, and 5; then the try setting all dice to the same value (all 1s, then all 2s, then all 3s on consecutive rolls; then they try manipulating only one die—for example, setting one die to the values 1, 2, 3, 4, 5, and 6 consecutively. Simplifying the problem in this way usually leads to a quick solution.
One powerful way to simplify a problem in a testing situation is to use the One Factor At a Time, or OFAT heuristic: vary one aspect of the test while holding steady all of the other factors that you can identify. This approach is powerful, in that it allows us to observe the difference in the output associated with varying a single factor in the input; but this approach is also fallible, in that we can’t necessarily be sure that we have identified all of the factors other than the one of interest. Another way in which this approach can fail is if testers abandon it too early. In this game, we’ve often seen testers who try manipulating a single die, setting it to 1 (for a result of 0); then setting it to 2 (for a result of 0)—and then giving up, since the results are “all zero”.
Recording observations is usually important. Players who perform a few random tests quickly realize that they’re losing information unless they write down something about the test. Still, they often neglect to record everything that they could about the results; they might record the numbers on the dice, but ignore the colours; they might record numbers and colours, but fail to record the position of the dice; they might record number and colour and position, but fail to note their guess; and so on.

In any testing situation, the advice to keep a record of all your tests is a heuristic. This approach is powerful, because it prevents us from losing data that might be valuable; but this approach is also fallible. We can only record what we can observe, and we may not be observing all that we could observe. It is also not certain what information is important for us to record. Some observations might be important, and others irrelevant, in which case recording them is a waste of time—although we don’t necessarily know which observations are irrelevant. It might be worthwhile to refrain from recording results if there’s no danger of forgetting them; if there are other means of recording going on (the system’s log files, screen recording, or some other form of automatic logging).
There’s a difference between a zero result and a useless result. In running this exercise, we’ve seen many, many cases where people confuse an output of zero with “no information”. That is, particularly when manipulating, they see several consecutive results of zero, and begin to believe that
There’s a difference between a repeating result and a result that is providing no new information. This is the general case of the specific observation above. When players see a number of the same results with varying input, some begin to question whether something about the tests is failing such that it is always producing the same result.
Observing the oracle can sometimes reveal information about the application under test. In the course of the exercise, some players “break the rules” by rolling more than five dice, rather than fewer; and typically, such players roll a large number of dice. This changes the calculating problem for the instructor (the “oracle”); summing the results for five dice is relatively easy, but summing the results for twenty dice is time-consuming and error-prone, so the “oracle” slows down.
Sometimes, when we’re in the position of testing trying to make sense of a pattern of results, we have access to an oracle that provides the same result as the application under test. If we can make observations about the oracle, that can serve as a useful pointer to understanding the application under test. We might have access to the source code for the oracle; we might be able to reverse-engineer the oracle more easily than the application under test; or we might be able to observe things about the oracle’s behaviour that will give us insight into the application under test.
A perfect answer might not be necessary; isomorphic results might do. Many players succeed in identifying a principle that is isomorphic to the actual principle, and win the game thereby. The three isomorphic solutions above work for pipped dice, but not for numbered dice.
Results from other testers are potentially valuable. Many players get an edge by watching the players next to them. Some consider this “cheating”, but since there’s no rule against observing other players, and since it’s okay to break the rules, it’s hard to characterize this behaviour as cheating. If we seek new information, there’s usually little point in running the same test that all the other testers have run.
Breaking conventions and rules appropriately is a key testing skill. Often the “rules” are arbitrary and pointless, simply conventions. Developers may protests that some test is not a “fair test”, but bugs aren’t fair; bugs by definition don’t follow the rules.
Devise your own game and your own rules!

Acknowledgements

This exercise was designed and developed by Michael Bolton and James Bach, based on the “Petals Around the Rose” puzzle presented to Michael by Joe McMahon in March, 2005.

Joe showed Michael the online version of the puzzle developed by Lloyd Borrett at http://www.borrett.id.au/computing/petals-j.htm. This includes an unverified story of Bill Gates’ attempts to solve the puzzle, at http://www.borrett.id.au/computing/petals-bg.htm.

There are several other online versions of the original puzzle:

http://vincentwoo.com/files/petals/
http://weavervsworld.com/docs/think/rose/
� � HYPERLINK "http://en.wikipedia.org/wiki/Petals_Around_the_Rose" ��http://en.wikipedia.org/wiki/Petals_Around_the_Rose�;

