
INSTRUCTOR'S EVALUATION OF THE
COURSE CSE 4415/ SWE 5415

CEM KANER, OCTOBER 2009

PREPARED FOR THE ABET REVIEW

We've been teaching this course since Spring 2003. I've been instructor of record six times
(three of these times, substantial teaching was done by doctoral students of mine, Pat McGee
and Andy Tinkham). A seventh (2007) offering was taught by Pat Bond, who I regard as the
most effective teacher (face‐to‐face instruction) in our department.

This has been a surprisingly difficult course for the students and the instructors. We have
redesigned the course at least four times and made significant revisions at least two other
times. The 2008 iteration reflected a fundamental shift in direction of the course. I think the
specific 2008 iteration worked out less well than I had hoped, but it laid a good foundation for
the 2009 redesign.

Intention of the Course
In early 2002, I began planning a course on the testing side of Extreme Programming (XP). My
primary goal was to emphasize the new approach to unit testing and XP's heavy reliance on
refactoring, building students' programming, testing and test automation skills. I expected
other instructors to teach courses like this at other schools and saw this as the field's best shot
at laying the foundations for the next generation of software‐testing architects.

Common Challenges
Pat McGee joined my lab as a doctoral student after more than 20 years of industrial software
development experience. Andy Tinkham joined as another doctoral student, after over 10 years
of developing automated testing solutions and teaching these to practitioner audiences. McGee
and Tinkham both liked XP and helped me refine the course. We worked through Angelo &
Cross's Teaching Goals Inventory (Classroom Assessment Techniques: A Handbook for College
Teachers, 2nd Ed. Jossey‐Bass, 1993) to prioritize our objectives. We did this three times in the
first four iterations of the course.

Each of us led the course at least once. We tried different tactics but faced the same challenges:

Student‐Related Challenges
Students find the concept of test‐driven development difficult.

 Several of the students flatly refused to believe that a testing course could require
significant programming skills. 2009 is the first year that has been free of this problem.
However, this is also the first year in which every student is either an undergrad or a

graduate student who studied at Florida Tech as an undergrad. This was the result of a
registration-related anomaly. Our student mix will be different next year.

 Several students write programs by cutting and pasting code they find on the Net.
Probably as a result, they are remarkably weak at generating their own implementations
of basic operations (such as sorting or navigating through a linked list). This is widely
discussed in the practitioner community (read Joel Spolsky's blog, Joel on Software, or
look at the very basic programming quizzes that companies like Microsoft use to screen
job applicants.) These students expect to snap together components rather than writing
their own code. Test-driven development is mystifying to them because it demands that
they build everything from scratch, justifying their implementation's iterations as they go.

 Several students have weak skills in problem decomposition. They don't know how to
break a complex task into manageable bits. Some tell me that they are used to having the
professor break the program down for them.

Each of us (Bond, McGee, Tinkham and me) saw these problems. We had a much higher failure
rate among graduate students than undergrads every year, under every instructor. I
interviewed Bond a few times (I was on sabbatical and often not in Melbourne to chat with
Bond) about his experiences with the course. In our most detailed discussion of student
performance, he indicated that at that time (before the end of the course), it appeared as
though only one graduate student would pass. I think I had the same result in 2006 and grad
performance in 2008 (with two exceptions) was abysmal as well.

We are not unique in seeing these problems. I host the Workshop on Teaching Software Testing
(WTST) every year (this February will be our 9th workshop) and we have had several discussions
of the challenges of teaching unit testing skills. In addition, there have been several
presentations and posters at SIGCSE and CSEET‐‐I've made a point of comparing notes with
several of these speakers. I think these problems are widespread.

As a specific example, Stephen Edwards, at Virginia Tech, also teaches test‐driven programming
to his students. I think he is one of the most thoughtful testing/programming instructors in the
field. He confirmed with me in several discussions that he finds, as we do, that students with
significant industry experience are more resistant to adopting this style. He also finds that many
graduate students are at a disadvantage in developing these skills. We discussed problem
decomposition last year at WTST; several of the faculty said that this was one of the hardest
skills for students to learn and one of the skills least explicitly addressed.

We also ran into three other challenges in dealing with student assessments:

 Several students failed to comply with instructions. We required them to develop their
code iteratively and submit multiple iterations. They did not. We asked them to deliver
code that did specific tasks. They would skip some tasks, sometimes very easy tasks. This
was sometimes because a student couldn't do a task but often due to sloppiness (the
student simply missed noticing the requirement or forgot to do it) or lack of time or a
gamble that we wouldn't notice. (All three of these have come out in post-course
interviews, sometimes done in informal discussion with a student a couple of years after
the course completed.)

 Some students gambled that we wouldn't actually read their code and wrote the code in a
way that didn't actually accomplish the task but did appear to pass its unit tests.

 Several students submitted weak work because they started working only a few hours (or
for the takehome final, only a few days) before it was due. As many other instructors
have reported at SIGCSE and other meetings, students who start a programming
assignment relatively late are likely to do poorly. We have replicated that result year after
year.

Instructional Materials‐Related Challenges
We started teaching the course using Kent Beck's book on Test‐Driven Development. It
presented the basic use of jUnit well but failed to give students guidance on test design. The
examples were too simple. The book ran out of content too soon relative to the level of skill
and understanding our students needed. Web‐based resources were oriented toward
experienced practitioners and left our weaker students confused. Our better students could
fend for themselves, but when half the class are trying to do the work but repeatedly fail to
produce anything satisfactory, the course is inadequate.

We concluded that the students needed a better textbook, one that would take them pretty far
along the learning curve before we demanded that they start doing significant tasks all on their
own.

We adopted David Astels' 2003 book, Test‐Driven Development: A Practical Guide with good
initial results.

 Astels wrote his book around the test-driven development of a database application. We
created a parallel assignment, creating a database of Magic cards instead of musical
recordings. We broke development into stories (iteration specifications) similar to Astels,
and encouraged students to use Astels' implementation as training wheels. Surprisingly
many students ignored Astels and submitted code that was only sometimes adequate. The
programming assignments in this course got much harder after the Astels project, and
these students typically failed. However, the students who took our advice and worked
through Astels in detail as a parallel task to writing their code built a good foundation for
later work.

 Unfortunately, jUnit evolved rapidly as did the other tools relied on by Astels. Each year,
students got more confused by the mismatches between Astels' text and the tools they
were using. Ultimately, Pat Bond reported that in his 2007 class, students were spending
more time trying to work around the errors (obsolete parts) of Astels than they spent
writing their own code.

There haven't been any good introductions to the use of jUnit since Astels. I have spoken to
exasperated faculty at other universities who are considering writing their own books, but so
far, nothing has come of this.

One of the challenges is that even though "Agile" development has become popular, it has also
become watered down. Recent surveys in Dr. Dobbs suggest that in a readership that boasts an
over‐80% adoption rate of "Agile Development", only about 13% use test‐driven development.
Most follow a process they call "Scrum" (I have heard enough mutually exclusive descriptions of
Scrum, from enough people who are credentialed as Certified Scrum Masters on the basis of

taking a several‐day industrial course, that I have no idea what someone means when they tell
me they do "Scrum." But generally, when people using it at work describe it to me (as distinct
from consultants at conferences), it seems that it doesn't involve much unit testing.)

This very low rate of adoption and weak sell‐throughs of previous books on unit testing has led
to limited demand for more books in the area. (As a successful author with a well‐connected
agent, I have a sense of how urgently publishers would like books on different test‐related
topics.) When there was a lot of TDD evangelism (2002‐2005), publishers were very interested,
but now, no one is aggressively soliciting manuscripts to introduce novice programmers to TDD.

There have been some good new books on TDD, but all of them are targeted to experienced
programmers who are often already playing with TDD. These assume more programming
sophistication than my students have.

The problem is not just with the books; it is also with the websites that support TDD. Early
presentations of xUnit were often quite detailed, with a tutorial flavor that was inviting to
relatively inexperienced programmers. xUnit has evolved in complexity but the online
documentation for jUnit 4 is much more tersely written (and there are fewer online articles
introducing it).

I tried Langr's Agile Java in 2008 after trying it in introductory programming courses. This is an
allegedly‐introductory book on Java that introduces TDD from the start. The book has several
weaknesses, not least that it teaches the mechanics of test‐driven development (how to use
several tools) but provides little guidance either in test design or in refactoring. The most
serious problem, though, is that the book follows a strict order for 230 pages and assumes
knowledge of those 230 pages throughout the rest of the book. The exercises are cumulative
(you can't skip to every second one) but demotivatingly tedious.

In 2009, we are using a different objects‐first Java book, with our own assignments that are
based on the book but tailored to the class. This seems to be working better, but we really need
a book that integrates an introduction (or re‐introduction) of an object‐oriented programming
language with xUnit for that language with advice on techniques for implementation‐level (e.g.
unit‐, protocol‐, and below‐the‐GUI integration‐) testing and advice on designing production
classes in ways that make them testable but still secure. This course will stay unstable until we
have that book. I don't have time to write it. I expect that over the years, this course will drift
away from teaching competent application of xUnit (or more generally TDD) and toward more
emphasis on design of implementation‐level tests.

Based on discussions with some members of the Agile community, I don't expect the current
thought leaders to write many (perhaps not any) introductory articles or books on xUnit over
the next year or two. This year's Workshop on Teaching Software Testing will take teaching
implementation‐level testing as its theme. I hope to put together a group of university
instructors who will develop some textual and video tutorial‐level materials and peer review
them before we publish them on our websites and revise our courses to rely on them.

Task‐Related Challenges
Until 2008, we included a maintenance programming assignment in each class. Students would
work in teams on a small open‐source test tool, adding a lot of implementation‐level tests and a

little bit of enhancement. Our best year for this was probably 2006. The task was too complex
for any of the teams, but we allowed the teams to merge into a classwide collaboration that
made a lot of progress. Students who worked hard in the team gained a lot of insight. The tool
improved. And several students skated past the work. In general, the diversity of skill and
attitudes in the classes (exacerbated by the mismatch between grads and undergrads) and the
difficulty of finding an open source tool that is challenging enough but not overwhelming, made
this unsustainable. I was especially concerned about students who were slow (inexperienced
and not terribly confident) programmers, who put in such long hours on this course that it
seriously interfered with their ability to succeed in other courses. We were crossing the
reasonable limit on student workload, and I decided to drop this feature.

If this course was only for undergraduates, and especially if this course was only for
undergraduates who enrolled voluntarily (rather than having it as a required course), I would
bring back the maintenance project. I think the 2009 students could probably handle it. But as
long as we have significant grad student enrolment, the burden on the strong students to carry
the weaker students becomes unmanageable and the burden on the weaker students to do
adequate work is impossible.

In several iterations of the course, we included student presentations, in which students
showed off some code to the rest of the class or laid out a topical area (e.g. refactoring, source
control, etc.). In some years, the study also earned bonus points by assuming responsibility for
coaching the rest of the students in this topic over the rest of the term. This was good training
for the students in communication skills (which were not part of the core objectives of the
course) but they slowed our coverage of key topics and the class got awfully confused when
they had to apply something that had been poorly presented. We included some presentations
every year, through 2008, but are no longer including presentations in 2009.

 Designing the 2008 Iteration
In 2004 to 2008, I opened the course with a description of the preceding year's final exam and
the ways that students had blown the exam. I had three objectives:

(a) chase away the students who are not going to pass the course. This might sound harsh,
but given our large foreign student population and the inflexibility of Homeland Security
toward foreign students, I want to reduce the frequency of desperate students begging me
to raise their grade to a pass or desperately attempting to cheat their way to a pass.

(b) alert students to common mistakes in the course, hopefully to encourage this cohort to not
make them

(c) initiate the effort to persuade students to begin their final (takehome) exam early enough,
so that they will have a chance of passing it.

In addition, in 2008, I gave students an opening survey, to assess their programming skills. As
expected, the course had a bimodal distribution of student skills, whether I measured this in
terms of self‐evaluation or by their answers to the closing two questions (one on simple testing
of an unsigned integer‐‐but in a way that gives insight into whether they have a clue of how
numbers are stored and the other on floating point precision.)

Given that distribution, which persisted through the first few weeks of the course, I targeted
the level of the course to the middle of the distribution, cut out the maintenance assignment,
decided to stick closely to Langr for the 1st half of the term, and focused lectures either on the
skills students needed to do better testing than Langr's examples, or on the skills / knowledge
students needed in order to get through Langr.

I decided to focus on programming within a single language (we added test‐driven web
programming using Ruby and then applied this knowledge‐‐of testing through the COM
interface‐‐back to a final exam in which students wrote a test tool in Ruby that did high‐volume
function‐equivalence testing of Excel versus Open Office Calc)

By the third week, several of the weakest students had dropped the course voluntarily. Shortly
after that, three others were confronted with evidence of plagiarism of their assignments and
they withdrew from the course. We still had a broad distribution of programming skill, but
many of the students most likely to fail had left. Based on this, I decided to be a little more
ambitious in my design of the final exam.

Note that what is going on here is not that I am varying a course "standard" to suit the
students. The course has no settled standard to vary. I am trying to calibrate the course to a
level that (a) addresses my learning objectives for the course (b) at a level that is challenging
but not impossible and not unfairly time consuming to a hardworking C student. We found a
level we were happy with in 2005 but the obsolescence of Astels and the lack of a suitable
replacement text changed the student experience and the difficulty of the course.

Running the 2008 Iteration
I collected short surveys from students on most days to get feedback on my teaching on an
ongoing basis. This is tactical‐level feedback. I've included a copy of the form that I use, but I
consider the responses to be private data, much like the tracking data that Watts Humphrey
encourages programmers to keep‐‐and keep private‐‐in his Personal Software Process.

The feedback (including several private discussions with individual students) and student
performance reinforced my opinion that we needed an objects‐first introductory text to our
programming language (Java, C#, Python or Ruby were all plausible candidates) because many
of the students were encountering Java in a way that they never had before, and they were
essentially relearning it. This time around, students were learning how to code:

 In a way that let them always know the state of their code

 In a way that required them to get each piece of the solution working before moving on to
the next

 In a way that relied heavily on tools (an IDE, a code coverage monitor, a style checker)

 In a way that required them to use a version control system, document changes from
iteration to iteration, and make intentional, predictable choices about when to treat an
iteration as complete (checking it into the VCS).

For most of the students, this was their first experience with what I would call "software
engineering" as distinct from "programming."

Unfortunately, It became clear as the course progressed that Langr wasn't the ideal book. For
2009, I would either create a fundamentally different stream of exercises to use with Langr or
choose a different book and create exercises/assignments suited to that one.

The main mistake that I made in 2008 involved the exam.

The National Institute of Science and Technology published a set of requirements for VoteTest,
a test tool that assesses the adequacy of electronic voting equipment. I presented to the class
the idea of implementing parts of VoteTest (test‐first, under source control) as the take‐home
final exam and they liked the idea. I circulated drafts of the proposed exam, we reviewed them
in class, hammered out ambiguities, added a couple of supporting lectures, and then started
the exam three weeks before it was due.

Up to this point, if I had it to do over, I would do everything in essentially the same way.

Unfortunately, I forgot to dramatically overemphasize the need to start on this exam early. The
students thought they understood the exam and I mistakenly thought that they understood its
difficulty. In fact, they were overconfident. All of them started late, and all of them got into last‐
minute crises. No one finished the exam. I gave a 1‐day extension but could not extend beyond
that because we have an appropriate policy that within‐term work (including takehome exams)
cannot extend into exam week.

Design for 2009
I worked with three of the 2008 students on the 2009 redesign. Two of them suggested ideas
for homework and assignments. The third helped me search through books on Java, Python and
C#, looking for an appropriate replacement text. I hired him as the TA for the course and we are
co‐teaching the 2009 iteration.

This year's course is more traditionally structured, with a higher emphasis on lectures and less
in‐class time for labs. There is still a lot of homework, though less than last year. The midterm
and the final are both programming take‐home exams. The midterm, like last year, is a
relatively simple programming task (though more complex than last year's). Student
performance on this will serve as a critical diagnostic and I will reappraise progress in the
course on the basis of it.

I intend to reuse the 2008 final exam, with modest revisions. However, I am revising the course
structure to better prepare students for this exam:

 Students were remarkably weak at file I/O, despite our coverage of this topic in class
(lecture and homework). The notion of driving tests from input-data files and of
comparing test results against expected-results files was challenging for all of the
students. We had discussed it in class but their mental model of tests was either manual
input or data hardcoded into a jUnit test. The voting system requires configuration files
(e.g. specifications of the candidates and their parties, specification of the layout of the
ballot) as well as data files (simulated votes, simulated output). This complexity was very
difficult for students to manage intellectually, even though we had discussed this aspect
of the exam in class when reviewing the draft questions and draft scope of the exam.

In 2009, we did homework on test‐driven development of file I/O before the midterm
and students are working with input‐data files, output‐data files and test oracle files
as part of the midterm exam.

 Students were remarkably weak on the use of a random number generator to simulate
random errors. (Imagine approaching a ballot-scanner type of voting machine with a pile
of test ballots. We know what's on the ballots. We can simulate the reading of the ballots
by the machine by generating a test result file in a way that usually copies every input
correctly to the result file but sometimes randomly changes a vote. In our testing, we can
bias the random-corruption method to make more or fewer errors and to make the errors
more or less systematically. Systematic corruption manifests as several errors that favor
one candidate or party over another. Now, can we assess our result files by comparing
them to the known good input sets and statistically test for systematic versus random
mistakes. In the practitioner community, there are quite a few variations on this theme.

In 2009, rather than spending more time on topics specific to xUnit and very popular in
the more advanced books (such as the use of mock objects or the most effective ways
to organize test methods into classes and packages), we're spending much more time
on random numbers and simulators because I think these are core test tools.

If the 2009 course is enough to prepare students well for the 2009 final, I'll adopt the same
strategy next year:

 Before the course starts or early in the course, identify an application or task that would
work well for the final exam and rough-draft the exam

 Present students with the rough draft

 Restructure some of the lectures and assignments to practice up skills the students will
need on the exam

1

Cem Kaner

From: Cem Kaner [kaner@kaner.com]
Sent: Tuesday, August 19, 2008 12:51 PM
To: 'wds@cs.fit.edu'
Cc: 'Karen Brown'
Subject: course file, CSE 4415 / SWE 5415
Attachments: Syllabus5415-2008.pdf; ProgrammerTestingPretest.html

Please file in the binder for CSE 4415.

I spoke at length with Pat Bond last year, while he was struggling through CSE 4415/SWE 5415. Pat was the third
instructor (Pat, Tinkham, me) who had a very high graduate student failure rate. We compared notes on the underlying
problems and I think the following represent a consensus view across several years of teaching. (I also met with Andy
Tinkham while in Minneapolis at MERLOT two weeks ago).

1. There are no good books for teaching test‐first programming to relatively inexperienced programmers. Of the
books that have attempted to reach this market, all but one are unusably outdated. Pat attempted to use one of
the outdated books and his students reported spending more time working around the book’s errors
(mismatches with current tools) than on designing / writing their code.

2. There are a few books for working professionals who have significant programming experience. These might be
useful with several of our undergraduates, who are often strong programmers. Unfortunately, for most of our
students, including our typical undergrads (who are stronger programmers than the typical grad students), these
books assume too much practical, real‐world intuition and provide too few examples and too little scaffolding. I
ordered the most recently published of this group from Manning Press, to serve as the course text for this year.
However, it provides very weak scaffolding. The first 6 chapters use a trivial example (hello world) as a
background to many interesting discussions of programming practice. I enjoyed these chapters. But for a
student just learning this material, the main work would be in assignments and examples developed outside of
the book, by the instructor. This is always possible to do, but it takes a lot of time. There are very few learning
objects in the repositories to support this.

3. Many of our students, especially graduate students, are too inexperienced to start at this level. Unfortunately,
by the time many realize they are in deep trouble, it is too late for them to substitute a course for this one, and
they cannot drop without going underload, a big problem for foreign students because homeland security looks
askew as underload students.

4. Students have several other types of resistance to this material, which I laid out in the syllabus. I spoke with
Steve Edwards while I was at NSF last week (Edwards is teaching test‐first programming of GUI objects, with
some cool tools and good results). His students, and the students of some other instructors who have used
Steve’s materials (and were dropping by his poster presentation area to visit), seem to do the same things, and
have the same problems as ours.

I am now convinced that the problems with CSE 4415/SWE 5415 have not been in the teaching but are in the mismatch
between the course and the students.

I gave students a half‐hour knowledge inventory last night and then discussed the course design with them until the end
of class. I think we have a consensus on a new approach that will work them very hard but less ambitiously in terms of
the final projects. I think a couple of students are disappointed and have offered to coach them on a more ambitious
variation of the course, in which they do some of the stuff we’re dropping from last year as bonus work.

I don’t think the overall course objectives will change. I do think that we will revise the prioritization of objectives. I also
think that the weaker programmers among the grad students, if they work hard, will come out much stronger in
programming and in testing, which is a better result than coming out flunking.

2

We are doing a bottom‐to‐top redesign of this course. I’ll know more about its projected long‐term structure in a month.

Cem Kaner, J.D., Ph.D.
Professor of Software Engineering, Florida Institute of Technology
www.kaner.com
www.testingeducation.org
http://www.satisfice.com/kaner/

CSE 4415 / SWE 5415 Opening Survey

NAME:
__

Are you currently enrolled in this course? Yes / No

1. How strong are your skills in Java programming?

 Expert
 Very competent
 Adequate
 Still learning
 Weak

nmlkj

nmlkj

nmlkj

nmlkj

nmlkj

2. How recent is your programming experience?

 I've been doing significant programming very recently
 I did significant programming a while ago but I remember most of it and will pick it back up very quickly
 I did some programming a while ago and will need some time to rebuild my skill
 I studied programming in school but have not done significant production programming and will need time

to pick up what I used to know
 I studied programming in school but was never a really strong programmer

nmlkj

nmlkj

nmlkj

nmlkj

nmlkj

3. Please comment on your answers (how strong / recent is your programming experience)

4. Describe your use of assertions in your programming.

5. Have you done unit testing? What tools did you use? What was your biggest challenge? Your biggest success?

6. What is test-driven programming? Describe any experience you have doing test-driven programming.

7. What is refactoring? Describe an example of refactoring that you have done of your own code.

8. Have you done maintenance of someone else's code? If so, please describe an example of what you did and
what the major challenges were.

9. What is domain testing? What is boundary analysis? Describe tests you have designed using domain testing
and/or boundary analysis.

10. Imagine testing an Integer Square Root function. The function reads a 32-bit word that is stored in memory,
interprets the contents as an unsigned integer and then computes the square root of the integer, returning the
result as a floating point number.

What values can you input to this function?
Can you imagine any invalid inputs to this function, inputs that should cause the function to return an
error message?
If you were to test ALL of the inputs to this function, how many tests would there be?

11. If a program computed the square root of 4 and reported 1.9999999999999999, would that be a passing result
or a failure? What about 2.00000000000000001? How close would the answer have to be to 2.0 for the result
to be a pass? Why?

Page 1 of 1

10/5/2009file://C:\Documents and Settings\Cem Kaner\Local Settings\Temporary Internet Files\Cont...

Experiences Teaching a Course in a Programmer Testing

Andy Tinkham
Florida Institute of Technology

Department of Computer Sciences
150 West University Blvd

Melbourne, FL 32901
andy@tinkham.org

Cem Kaner, J.D., Ph. D.
Florida Institute of Technology

Department of Computer Sciences
150 West University Blvd

Melbourne, FL 32901
kaner@kaner.com

Abstract
We teach a class on programmer-testing with a

primary focus on test-driven development (TDD) as part
of the software engineering curriculum at the Florida
Institute of Technology. As of this writing, the course has
been offered 3 times. Each session contained a mixture of
undergraduate and graduate students. This paper
discusses the evolution of the course, our lessons learned
and plans for enhancing the course in the future.

1. Introduction

Software testing is a key component of the software
engineering and computer science curricula (see [1, 2] for
examples) and is an area of research and teaching strength
at Florida Institute of Technology. Many of our graduates
pursue testing careers; it is Florida Tech's intention to
provide those students who choose this path with a strong
background. Four years ago, as part of the design of our
(now-accredited) B.Sc. program in software engineering,
the faculty agreed that two testing courses should be
required for graduation in software engineering. One
would present black box techniques1 and introduce testing
principles to sophomores. The other would build on the
testing and programming knowledge of seniors. This
second course is the focus of this paper.

The three times Florida Tech has offered the course,
Kaner was the instructor of record. He co-teaches the
course with a doctoral student, as part of his commitment
to giving doctoral advisees a closely supervised teaching
apprenticeship. In Spring 2003, Kaner and Pat McGee co-
taught and jointly designed the course; Tinkham was a
student in this class. Tinkham served as teaching assistant
in Fall 2003 and took the leadership role in Fall 2004. We
expect him to lead the course again in Fall 2005. Kaner

1 See http://www.testingeducation.org/BBST/

assigns final grades to graduate students who take the
course and independently regrades their work.

2. Related Work

We have seen no published reports of an undergraduate
course focused on unit testing and/or TDD. However,
there are several experience reports for teaching TDD in
an introductory programming class [3-6], a more advanced
class [7-15], and even a high school level computer
science class [16]. In general, results were positive in these
reports, with one exception: Müller and Hagner [12] found
that a group using a variant of TDD took slightly longer to
develop an application than a control group, with only
small increases in reliability. They did however find that
the TDD group had a significant increase in program
understanding, as measured by the degree of reuse in the
program.

3. Objectives

A black box tester analyzes a product from the outside,
evaluating it from the viewpoint of its relationship with
users (and their needs) and the hardware and software with
which it interacts. The tester designs tests to check
(typically, disprove) the appropriateness and adequacy of
product behavior [17-20]. Skilled black box testing
requires knowledge of (and skill with) a broad variety of
techniques and the ability to appraise a situation to
determine what processes, tools and techniques are most
appropriate under the circumstances [17].

Unfortunately, testers whose only experience is black
box can evolve a narrow attitude that doesn't necessarily
work effectively with the rest of the development effort
[21]. The programmer-testing course is Florida Tech's way
of minimizing this risk among its graduates while
increasing their sophistication.

Specific course objectives for the programmer-testing
course vary from year to year, but they fall within some
broader requirements:
• The course should broaden the perspective of students

who will join black box test groups as a career and give
them insight into ways they might collaborate with or
rely on the programmers.

• The course should help average programmers become
more thoughtful, more aware of what they're writing
(and why) and more capable of writing code that works.

• The course should introduce students who will become
project managers to the idea that many types of bugs are
much more cheaply and efficiently detectable with
automated programmer tests than black box tests, and
that code testability and maintainability are well served
by good suites of programmer tests.

• The course should introduce students who will become
testing toolsmiths or test architects to the art of
designing and creating reliable test tools.

• The course should give students some practice in soft
skills, especially teamwork and presentations.

• The course should incent students to create high-quality
artifacts that they can show off during job interviews.

4. Challenges and Tensions

Kaner's general approach to course development is
evolutionary:
• He gives an easy course the first year. This compensates

for the instructional blunders (confusing readings,
lectures, examples, etc.) that make the course
unintentionally harder. It also compensates for mis-
enrollment. The new course has no reputation. Some
students won't realize what they've gotten into until it is
too late to drop the course. This is a particular problem
for non-American students at Florida Tech. Dropping
below 9 semester units can trigger Homeland Security
interest in a visa student and so some students will
doggedly stick with a course when it is too late to
replace an inappropriate course with an alternative.
Kaner's preference as a teacher is to work with the
people in the room, helping them grow, rather than
persevering with a plan more appropriate to a different
group. His view of the optimal feel of a new course is
as a shared experiment in which a willingness to try
new things is more important than getting everything
right.

• The second iteration is better organized and more
demanding than the first, but still transitionary. He can
prevent or control many of the problems that came up
last time, but there will be new problems and he will
make new mistakes. Kaner's standards are still floating,
heavily influenced by student performance and
feedback.

• By the third iteration, he can anticipate and manage the
typical-to-this-course student problems and excuses. He
can reuse and improve a fair bit of material from past
years instead of inventing everything. And, at the start
of the term, he can present an explicit, detailed
description of previous patterns of student difficulty and
put students on notice of course standards while they
still have time to drop and replace this course. Perhaps
because of his background as an attorney (and a
prosecutor), Kaner is unwilling to enforce harsh
standards on students unless they were advised of them
clearly enough and early enough that they could
reasonably avoid them or otherwise appropriately
change their circumstances or behavior. But given early,
meaningful notice, the standards are the standards. If
one of Kaner's courses will ever be too demanding, it
will probably be in his third or fourth teaching of it.
In this particular course, the most striking recurring

problem is that some of our students (especially some
graduate students) do not expect (and may even refuse to
believe all the way through the final exam), that a testing
course could require them to write clean, working,
demonstrably solid code. Even though they have Java
coursework in their background, these students are
overwhelmed by the programming requirements.

Students who are not motivated programmers can find
a multitude of excuses for not getting work done. If we ask
them to use a new (to them) programming environment
(such as Eclipse) or a new tool (such as Ward
Cunningham's Framework for Integration Testing (FIT) 2)
or a new language (such as Ruby), we can expect some
students to complain that it cannot be installed or run on
their platform, that its documentation is unusable, and
therefore that it is not their fault that they aren't making
progress. This problem will resolve itself over time as the
course gains a no-nonsense reputation at Florida Tech, but
until then, some of our decisions are defensive, damage
controllers that will protect our time by preempting
common excuses.

5. Course Implementation

Here are some elements common among the three
instances of the course:
• The course is a 3-credit one-semester (16 week) course.

We offer it to upper-level undergraduates and graduate
students who have completed coursework in black box
software testing and Java programming.

• Classes are in a teaching lab with at least one computer
per student.

• Students were encouraged, but not required, to work on
assignments in pairs and co-submit a single piece of
work. Getting two college students in the same place at

2 http://fit.c2.com/

the same time was sometimes challenging (see also [9,
14, 15]), but most students resolved these challenges
fairly easily.

• Students were required to submit their own tests and
exams. They could not collaborate in any way on the
midterm. The final exam was an open book take-home
exam, and they could consult any source, including
other people. Students were required to submit
individual exam solutions, showing independent
coding, and to acknowledge the people they consulted.

• Students were encouraged, but not required, to make in-
class presentations of their work. We awarded bonus
points for presentations, and in the second and third
iterations, we ran collegial contests (students vote) for
some groups of presentation (such as funniest
application, tightest implementation, clearest
implementation) and gave prizes.

• Several days involved student presentations or
discussion / coaching associated with the current project
rather than prepared lecture.

• There was a relatively simple in-class mid-term exam
intended to test student understanding of basic concepts.

• Apart from polishing the wording, we used the same
final exam each year, a version of which is available on
Kaner’s blog3. Students were to write a test harness in
Ruby, automating function equivalence testing of
OpenOffice Calc against Microsoft Excel.
Programming had to be test-driven and students had to
submit multiple iterations of their tests and code. We
provided students with a Ruby library that Tinkham
created to make Calc’s COM interface more closely
resemble Excel’s. In a given test, the harness generated
a random number, provided it to a selected worksheet
function (or combination of functions) in Excel and to
the equivalent in OpenOffice (together forming a
function pair) and then compared results within a
tolerance which the student specified and checked
against as part of the assignment. Students tested each
function pair 100 times. Students tested individual
functions, pre-built complex (multi-function) formulas,
and randomly combined complex formulas in this way.
The tool was to provide a summary of each set of 100
results. The exam allowed up to 20 bonus points (of 120
possible points) for a thoughtful suggestion of a method
for avoiding or dealing with nested invalid inputs that
would block evaluation of a formula (for example,
tan(log(cos 90)) is undefined, because cos 90 is 0 which
is an undefined input for the log function).

5.1. Spring 2003

Seven students took the first course. All had been
successful in Testing 1 (which many students find

3 http://blackbox.cs.fit.edu/blog/kaner/archives/000008.html

difficult) but their programming skills and confidence
ranged from first-rate to minimal.

We started with a brief look at differences between
black box and programmer-testing approaches—
programmer tests are typically simpler, confirmatory in
intent (designed to verify expected functioning rather than
hunt for bugs), narrower in focus, and more tied to the
details of the code than to a usage scenario. These tests are
rarely very powerful, but a good collection of them
provides a unit-level regression test suite that the
programmer can run every time she changes the code. The
tests serve as change detectors, raising an alert that a
tested assumption was invalidated or violated by added
code. An extensive unit test library provides powerful
support for refactoring [22] and later code maintenance
(bug fixes or additions to existing functionality). It also
provides examples—unit tests—that show how the units
work in detail. This is an important, concrete
communication with future maintainers of the code. Test-
driven programming also provides a structure for working
from examples, rather than from an abstraction. Many
people operate from a concrete, example-based learning
and thinking style [23]; the TDD approach works with that
style instead of fighting it.

We expected people to quickly catch on to the test-
driven style from Beck's introduction and to be
enthusiastic about it. Based especially on coaching from
Sam Guckenheimer, Alan Jorgenson and Brian Marick, we
had a long list of traditional testing topics we planned to
explore in a new way while working in this style.

To our surprise, the course bogged down quickly.
Students either didn't understand JUnit, didn't understand
the test-driven approach or didn't appreciate its benefits.

In retrospect, part of the problem was that our examples
were too simple. We started out with basic sort routines
that students already understood. This was intended to
keep the programming aspects of the first part of the
course simple, but this approach frustrated many students:
• The weakest programmers found even these routines

challenging (or, at least, they were unsuccessful in
writing their own versions of them), but algorithms and
sample code for these routines were readily available
from Google. Kaner even encouraged students to
consult these solutions. Given access to the solution, it
felt artificial to some students to recreate the solution in
baby steps.

• Stronger programmers accepted the tasks but didn't yet
see much value in solving a known problem in a
seemingly slow way.
We didn't understand that this was a problem at the

time, and so we kept the examples simple while
introducing new techniques, up to and including FIT.

Brian Marick gave a guest lecture in which here-
introduced the class to TDD and demonsted more complex
examples in Ruby. His demonstration also introduced

students to testing at the API (application programmer
interface).

In subsequent classes, we used Ruby to drive programs,
then to create simple tests of programs, leading up to the
final exam. The student presentations of their Ruby code
and tests looked pretty good.

The final exam went less well. Several students wrote
the test harness in a non-test-driven way. Every student
appeared to have misunderstood the intent of the task as
"test OpenOffice against Excel" instead of "write a test
tool in a test-driven way and use a test of OpenOffice
against Excel to illustrate your ability to do this type of
work." The unit tests should test the test harness, and the
harness should test the target program. But rather than
using Test::Unit (the Ruby version of JUnit) to test the
code they were writing, students used Test::Unit to drive
their harness' testing of OpenOffice. Some argued that
correct results from application of the test harness to
OpenOffice demonstrated that it was working, and so
further unit testing was unnecessary. Neither instructor
had anticipated this problem

5.2. Fall 2003

Five students enrolled in the course: two
undergraduates and three graduate students. Another
graduate student audited the course. Programming skills
again ranged across the spectrum.

We again introduced test-driven programming with
Beck [24]. We required the new edition of Paul
Jorgensen's classic [25], expecting to cover several
traditional issues in glass box testing. And we required
students to program in Eclipse, for which there were
plenty of good online resources.

This time, we wanted to spend most of the course time
on one or two complex examples. We introduced the basic
objectives of glass box testing, then introduced test-driven
programming with a simple example, but moved quickly
to an introduction to two testing tools, Jenny4 (a test tool
to support combinatorial testing, written in C) and Multi5
(a test tool to support testing of code using logical
expressions, written in Java). The class split into two
groups, one looking at Jenny, one at Multi. Their task was
to learn the code, writing unit tests to encapsulate their
learning as they went. After they had learned the code, we
planned to have them extend the functionality using TDD,
probably by improving the tools' user interfaces.

The students who worked on Jenny were good
programmers, but they were unable to gain understanding
of Jenny's internal structure in the time available. The
students working on Multi got stuck on the functionality it
provided. We spent what seemed like endless hours of

4 http://burtleburtle.net/bob/math/jenny.html
5 http://www.testing.com/tools/multi/

class time on what felt like the same ground, how to
generate an adequate set of tests for a logical expression.
Neither group made significant progress. Eventually,
Kaner cancelled the projects. The midterm exam applied
test-driven techniques in Java to a simple program. We
worked on FIT where we did some small assignments, and
then moved on to Ruby, where we used Ruby to drive
programs through the COM interface, and used Test::Unit
to support test-first Ruby programming. We had some
good student presentations, and proceeded to the final
exam.

Students did their own work on the final exam (we
have electronic copies of all of the exams—there was no
hint of similarity between this term's solutions and the
previous term's) and average performance was better than
in Spring 2003. This is a subjective appraisal, not a report
of average grades—we marked these exams a little more
harshly than the previous term's. We were more explicit
about how we expected this project to be done. We made
it clear that we expected test-driven development of the
test harness, and that the test harness, as a well-tested
standalone program, would test the spreadsheets. Some of
the exams did this. Other students still failed to use a test-
driven approach, slapping together a largely untested
program that could drive OpenOffice Calc and Excel and
using Test::Unit to drive the testing of the spreadsheets,
rather than the testing the test harness. In a long post-exam
interview with the author of the best exam of this type, the
student insisted that TDD of a test tool was unnecessary
because the results of testing the applications would
validate or invalidate the tool.

In retrospect, we like the idea of giving students a test-
driven maintenance project. Despite the problems, some of
the students learned a fair bit from beating their heads
against strangers' code for the first time. We don't expect
to use Jenny again, but we would consider using Multi.
Next time, however, we'll schedule an open book exam
early in the project that requires students to describe
Multi's internal structure and some inflexible milestones
for adding some groups of unit tests to the code base to
encourage students gaining understanding of the program.

Other retrospective decisions: We
• resolved to be explicit to the point of tediousness that

this was a course on test-driven development and that
if students did not demonstrate competence in test-
driven programming when given the chance, they
would flunk the course,

• would adopt one of the recently published books on
test-driven programming that had other examples and
included more discussion of test design,

• would introduce test-driven programming with some
more complex examples.

• would add a book on Eclipse to the required reading
list to deal with students who protested that they

couldn't write code because they couldn't understand
Eclipse,

• would use a book on glass box testing that was more
closely aligned with the test-driven approach.

The Fall 2003 course wasn't what we had hoped it
would be, but we felt that we had learned a lot from it, that
we had much better insight into strengths and weaknesses
of Kaner's teaching and assessment style as applied to this
course and into the problems students were having. Based
on our experiences in-class, on work submitted, and on
other information we gathered, we concluded that some
students' issues were more motivational than cognitive and
that some specific problems raised by some students
during the term were excuses presented to obscure a
shortage of effort.

5.3. Fall 2004

Of the 12 students who completed the course in Fall
2004, nine were undergraduates. As in past years,
individuals' programming skills ranged from strong to
weak.

Most of the Fall 2003 classroom time had been spent
on discussion and presentation rather than planned lecture.
This time, we forced more structure on the course in
several ways. We shifted back to a largely lecture-based
style6, we focused the course more tightly on TDD, agile
practices, and testing an application through an API,
dropping coverage of some classic unit testing techniques,
and we described our (higher) expectations to the students.
We did this by describing both the projects they would do
and the expectations we had for them. We also referred
back to problems students had in previous courses,
identifying some types of common mistakes (such as
submitting work that had not been demonstrably
developed in a test-driven manner) as unacceptable and
likely to lead to failure. For the final exam, we distributed
a grading chart in class and used it to explain how we
would grade the submitted work.

The course texts were Astels' Test-Driven
Development: A Practical Guide [26], Hunt & Thomas's
Pragmatic Unit Testing in Java with JUnit [27], and
Holzner's Eclipse [28]. We also recommended Thomas &
Hunt's Programming Ruby [23] when the second edition
became available partway through the semester. We
assigned readings from Astels and Hunt & Thomas.

Astels worked well as the main text book for the
semester. This book covers basic topics of TDD for the
first half of the book, while the second half is a full
example building a program for tracking movie reviews.
One project (discussed below) was designed to be similar

6 Materials from the third offering will be available at

http://www.testingeducation.org

to this example, and it worked well. We'll use this book
again when we teach the course in Fall 2005.

Hunt & Thomas’ JUnit covered the basics of JUnit, but
Kaner considered the book's approach to test design too
shallow and too formulaic. In 2005, we'll use Rainsberger
[29] instead.

Holzner [28] served its purpose—students figured out
how to use Eclipse without having to come to us for
technical or (much) conceptual support. Unfortunately,
Holzner predominantly covers Eclipse 2 rather than
Eclipse 3. In 2005, we'll use D’Anjou et al. [30], which
supports Eclipse 3.

We gave in-class assignments on refactoring, ideas for
unit tests, and user stories. These helped students develop
their understanding of these basic concepts; we'll use more
in-class activities in 2005.

We also assigned four take-home assignments,
covering refactoring, user stories, and using Ruby to drive
COM interfaces. These generally consisted of short
answer type questions such as “Identify the refactorings
that should be applied to the following piece of code:” or
involved writing short programs. For the Ruby homework,
students had to write two Ruby scripts. One had to launch
Microsoft Word, enter a paragraph of text with known
spelling errors, then write out the spelling errors and
corrections. The other had to control Internet Explorer,
cause it to go to a website of a calculator of the student’s
choice (where calculator was loosely defined as a page
which took input values of some sort, processed them, and
then returned some results), enter data and then echo the
results from the calculator. These were designed to prepare
the students for the final exam.

We originally planned for two projects, one focused on
creating an interesting program from scratch using TDD,
the other focused on a maintenance operation (perhaps
another crack at Multi). We designed the first project to be
similar enough to Astels’ movie review tracking program
that students could use his example as a guide, while
different enough to make the students apply the concepts
themselves. We saw this as scaffolding that was important
for weaker programmers. Students were to build an
application for tracking a collection of something—the
class decided on collectible game cards (Magic the
Gathering from Wizards of the Coast). The majority of
students were already familiar with this game and had
cards. We provided cards to students who lacked them,
along with a student presentation on the basics of the game
and hosted a weekend afternoon of game play. The
students had about a month to implement 10 user stories in
Java, using Eclipse, JUnit, and a Subversion source control
server (five of the six pairs used the server).

While we were teaching the course, four hurricanes
wreaked havoc on Central Florida, affecting classes (and
many other things) at Florida Tech. As the hurricanes and
their aftermath progressed, we repeatedly checked with

students on their overall workload and adjusted
expectations and schedules. Ultimately, we canceled the
second project, extended time for the first project and,
because the chaos had unfairly disadvantaged some
students, offered a make-up project. In the make-up, we
took the best example of student code from project 1 (with
permission of the students), removed the original students’
names, and added three more user stories. The students
who did the make-up were now doing maintenance on
someone else's code. We'll probably do this again, perhaps
using it as the second project.

The mid-term exam had 8 short-answer questions
covering the concepts of TDD. The average grade was
82% (5 of 12 students earned A's--above 90%. The lowest
grade was a D, 67%). This indicated a reasonable class-
wide understanding of the concepts.

The final exam called for the same test tool as in prior
iterations, driving comparisons of OpenOffice Calc against
Excel. We gave students a grading chart in advance. Kaner
gave an extensive lecture on ways students had lost points
on this exam in previous classes. We gave students almost
3 weeks to complete the exam and we set aside the last
day of classes (a week before the exam was due) for
students to bring their exam progress to class and compare
notes with other students. Students were not risking
anything by collaborating because they knew that we don't
grade on a curve—if everyone does well, everyone gets
A's. The results: 5 A's, 1 C, 1 D, and 5 F's. The "A" papers
showed a good grasp and good application of TDD
practices and we are confident that none of the passing
papers relied inappropriately on other student work. In
contrast, the failing students made the same mistakes as in
prior years (despite warnings in classes that most or all of
them had attended). They wrote code without writing tests
for the code. They didn't give us examples of code
iterations, they didn't show refactoring, they didn't answer
some sections of the exam at all, and despite explicit
requirements stated on the exam and in lecture, they didn't
separate the testing of the test harness from testing of the
spreadsheets (for which they were supposed to use the
harness). The weakness of this work was partially the
result of procrastination. We warned students that this task
was larger than they might expect and urged them to start
early. But from the time course of drafts submitted to
Subversion, and nonexistent progress as of the last day of
classes, we know that some groups started very late. The
last two times we taught the course, we chose to grade
final exams more gently. This type of information goes on
the grapevine in a small school and may have incorrectly
reassured some students that they could ignore our
repeated descriptions of how we would grade. Next year,
the grapevine will carry a different story.

Despite the high failure rate, performance was better
across the board than the first two iterations, all students
gained knowledge and skills from the course, and several

students gained significantly. The third iteration was a
success.

6. Lessons Learned & Plans for Improvement

Over the three iterations of the course, we've learned a
few lessons:
• Test-driven programming is contra-paradigmatic for

many students, especially graduate students who have
become established in a different point of view. This
makes the material much harder to teach and learn
because students have to unlearn or reinterpret prior
school and work experience. As with heavyweight
processes taught in some software engineering courses,
when students are required to apply processes that are
more tedious and complex than valuable in the context
of the problem they trying to solve, some will learn
contempt for the process. In this course, students need
concrete examples that are difficult enough to show the
value of the test-driven programming.

• Test-driven programming is probably not the right
approach for all programmers, or all programming
students. People differ strongly in cognitive styles,
learning styles and thinking styles. [31, 32] Some
people will more readily proceed from specific
examples to general designs, while others will more
naturally develop abstractions that guide their
implementations. This doesn't mean that a person who
primarily operates with one style cannot learn or
operate with another, but it does suggest that some
students will be predisposed to be turned off by the
course, and that to be effective teachers, we have to
develop some strategies for motivating them. We see
this as our most significant challenge for 2005.

• Not all computer science and software engineering
students can program or want to program. This is not
unique to Florida Tech. We have seen it discussed by
faculty from a reputationally wide range of universities
at several academic meetings focused on the teaching of
computer science, software engineering, and software
testing. These students are not idiots—we think that
surviving a computing program to a senior or graduate
student level when you can't get high marks from your
code must take a lot of compensatory intelligence and
work. But the students face problems when they join a
class whose intent is to get them to integrate their
existing knowledge of programming with ideas from
other fields. Students in this situation need support,
such as well-written supplementary readings, in-class
activities that facilitate coaching of work in progress,
and pairing with students whose skill sets are different
from theirs. We think they also need to face a firm
expectation that they will learn to use the course tools,
they will do assignments on time and in good order,
they will demonstrate their own programming skill, and

that their success in this is primarily their responsibility
and not ours.

• We haven't seen this mentioned before so we'll note that
JUnit, especially JUnit with Eclipse, provide an
experimenter's foundation, especially for weak
programmers. If students want to understand how a
command works or how a few commands work
together, these tools facilitate an organized and efficient
trial-and-error study. Some of our students seemed to
learn well this way.

• Using TDD to develop a new project is different from
maintaining or enhancing an existing project. We
haven't yet successfully incorporated test-driven
maintenance into the course, but we will.

• In the second and third iterations, we had planned to use
an assigned project to introduce students to the idea of
test-first development or maintenance of a test tool, but
the second iteration's assignment failed and the third
iteration's was blown away. We are fascinated that this
is such a hard concept and wonder whether this is why
so many test tools on the market are so full of bugs. In
future iterations, whether by project or in-class activity,
we will make sure that students work with a layered
architecture (independently test a test tool that will then
test a product under test) before taking an exam that
also requires them to do this. This is an essential lesson
for students who will become toolsmiths.

• It's probably time to change the exam, but we plan to
change details while keeping the same approach and
leaving the same technical traps for students to fall into
or overcome.

• Well-designed in-class activities and homework support
learning and give fast feedback to the student and the
instructor. They help students develop skills in small
steps, and gradually apply them to more complex
problems. In his black box testing course, Kaner now
videotapes lectures in advance, students watch the
lectures before coming to class, and all class time is
spent on coached activities. It takes enormous work to
build such a course. We will evolve this course in that
direction, perhaps achieving the full shift over three
iterations.

• JUnit, Eclipse and Subversion all helped students do
complex tasks. Next time, we'll add build management
with Cruise Control or Ant.

• We understand that a book on Ward Cunningham's FIT
is coming soon. Along with supporting acceptance
testing, FIT supports test-driven, glass box integration
testing. This is important knowledge for this course. We
expect to also include FitLibrary and FolderRunner
from Mugridge7 and StepFixture from Marick.8

7 http://fitlibrary.sourceforge.net/
8 StepFixture, at www.testing.com/tools.html

• We want to work on our students' sophistication as test
designers. They come into this course with a testing
course, and often test-related work experience, but in
the course they apply relatively little of what they
know. The assertion that it is possible that one could
"test everything that could possibly go wrong" is
patently absurd. Instead, we need to frankly face the
question, What test design strategies will help us create
the most effective tests, for what purposes, in a
reasonable time frame? The answer is very different for
programmer testing than for system testing, but as with
system testing [17], we expect many different good
answers that depend on the specific development
context. We and our students will learn parts of some of
the answers to these questions together over the next
few years.

7. References

[1] ACM/IEEE Joint Task Force, "Software Engineering 2004:
Curriculum Guidelines for Undergraduate Degree Programs
in Software Engineering," vol. 2005, 2004.

[2] T. Shepard, M. Lamb, and D. Kelly, "More Testing Should
be Taught," Communications of the ACM, vol. 44, pp. 103-
108, 2001.

[3] D. Steinberg, "The effect of unit tests on entry points,
coupling and cohesion in an introductory Java programming
course," presented at XP Universe 2001, Raleigh, NC, 2001.

[4] M. Wick, D. Stevenson, and P. Wagner, "Using testing and
JUnit across the curriculum," presented at 36th SIGCSE
technical symposium on Computer science education, St.
Louis, MO, 2005.

[5] V. Jovanovic, T. Murphy, and A. Greca, "Use of extreme
programming (XP) in teaching introductory programming,"
presented at 32nd Annual Frontiers in Education 2002,
Boston, MA, 2002.

[6] E. G. Barriocanal, M.-Á. Urbán, I. A. Cuevas, and P. D.
Pérez, "An experience in integrating automated unit testing
practices in an introductory programming course," ACM
SIGCSE Bulletin, vol. 34, pp. 125-128, 2002.

[7] S. Edwards, "Using Test-Driven Development in the
Classroom: Providing Students with Automatic, Concrete
Feedback on Performance," presented at International
Conference on Education and Information Systems:
Technology and Applications EISTA 2003, Orlando, FL,
2003.

[8] R. Kaufmann and D. Janzen, "Implications of test-driven
development: a pilot study," presented at 18th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA 2003),
Anaheim, CA, 2003.

[9] G. Melnik and F. Maurer, "Perceptions of Agile Practices:
A Student Survey," presented at Agile Universe/XP
Universe 2002, Chicago, IL, 2002.

[10] R. Mugridge, "Challenges in Teaching Test Driven
Development," presented at XP 2003, Genova, Italy, 2003.

[11] M. Müller and W. Tichy, "Case study: extreme
programming in a university environment," presented at

Software Engineering, 2001. ICSE 2001. Proceedings of the
23rd International Conference on, Toronto, Ontario, 2001.

[12] M. M. Müller and O. Hagner, "Experiment about test-first
programming," Software, IEE Proceedings- [see also
Software Engineering, IEE Proceedings], vol. 149, pp. 131-
136, 2002.

[13] T. Reichlmayr, "The agile approach in an undergraduate
software engineering course project," presented at Frontiers
in Education, 2003. FIE 2003. 33rd Annual, Boulder, CO,
2003.

[14] A. Shukla and L. Williams, "Adapting extreme
programming for a core software engineering course,"
presented at 15th Conference on Software Engineering
Education and Training, 2002. (CSEE&T 2002), Covington,
KY, 2002.

[15] D. Umphress, T. Hendrix, and J. Cross, "Software process
in the classroom: the Capstone project experience," IEEE
Software, vol. 19, pp. 78-81, 2002.

[16] J. Elkner, "Using Test Driven Development in a Computer
Science Classroom: A First Experience," vol. 2005, 2003.

[17] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in
Software Testing: Wiley, 2001.

[18] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer
Software, 2nd ed: John Wiley & Sons, 1993.

[19] G. J. Myers, The Art of Software Testing. New York, NY:
Wiley-Interscience, 1979.

[20] J. A. Whittaker, How to break software: a practical guide to
testing: Pearson Addison Wesley, 2002.

[21] C. Kaner, "The ongoing revolution in software testing,"
presented at Software Test & Performance Conference,
Baltimore, MD, 2004.

[22] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code.
Boston, MA: Addison-Wesley, 1999.

[23] D. Thomas, C. Fowler, and A. Hunt, Programming Ruby:
The Pragmatic Programmer's Guide, 2nd ed. Raleigh, NC:
The Pragmatic Programmers, 2004.

[24] K. Beck, Test-Driven Development By Example. Boston,
MA: Addison-Wesley, 2003.

[25] P. Jorgensen, Software Testing: A Craftsman's Approach, 2
ed. Boca Raton, FL: CRC Press, 2002.

[26] D. Astels, Test Driven Development: A Practical Guide.
Upper Saddle River, NJ: Prentice Hall PTR, 2003.

[27] A. Hunt and D. Thomas, Pragmatic Unit Testing in Java
with JUnit. Raleigh, NC: The Pragmatic Programmers,
2003.

[28] S. Holzner, Eclipse, 1st ed. Sebastopol, CA: O'Reilly &
Assoc., 2004.

[29] J. B. Rainsberger, JUnit Recipes: Practical Methods for
Programmer Testing. Greenwich, CT: Manning, 2004.

[30] J. D'Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P.
McCarthy, The Java(TM) Developer's Guide to Eclipse, 2nd
ed. Boston, MA: Addison-Wesley Professional, 2004.

[31] R. J. Sternberg, Thinking Styles. Cambridge, UK:
Cambridge University Press, 1997.

[32] R. J. Sternberg and L.-F. Zhang, "Perspectives on Thinking,
Learning, and Cognitive Styles," in The Educational
Psychology Series, R. J. Sternberg and W. M. Williams,
Eds. Mahwah, NJ: Lawrence Erlbaum Associates, 2001, pp.
276.

	WTSTInstructorReflection
	InstructorReflection.pdf
	InstructorReflection.pdf
	cse4415design2008
	cse4415pretest
	ExperiencesTeachingTDD _final_

