
Fostering the Next Generation of
S ft T t A hit tSoftware Test Architects:

Reappraising Software Testing 2
Cem Kaner, J.D., Ph.D.

Executive Vice-President, Association for Software Testing

Professor of Software Engineering, Florida Institute of Technology

Data Analysis / Presentation
by Nawwar Kabbani

February 5 2010February 5, 2010
These notes are partially based on research supported by NSF Grant CCLI-
0717613 “Adaptation & Implementation of an Activity-Based Online or Hybrid
Course in Software Testing.” Any opinions, findings and conclusions or

d ti d i thi t i l th f th th d d

Copyright (c) Cem Kaner 1

recommendations expressed in this material are those of the author and do
not necessarily reflect the views of the National Science Foundation.

UNDERLYING OBJECTIVE

F hFoster the next

fgeneration of test

harchitects.

UNDERLYING CONTRAST: COMMODITY-LEVEL SOFTWARE TESTING

• You are a commodity if:

 your client perceives you as equivalent Commodities
Th b

y p y q
to the other members of your class

• Commodity testers:

There are green bananas
and ripe bananas
and rotten bananas

have standardized skills / knowledge

 are easily replaced

 are cheaply outsourced

and big bananas
and little bananas.

But by and large are cheaply outsourced

 add relatively little to the project

But by and large,
a banana is a banana.

Commodity testers have little on-the-job control over their pay, status, job
security opportunity for professional growth or the focus of their worksecurity, opportunity for professional growth or the focus of their work.

WHAT LEVEL ARE YOU WORKING AT? (SOME EXAMPLES)

CHECKING • Testing for UI implementation weakness (e.g. boundary tests)
• Straightforward nonconformance testing
• Verification should be thought of as the handmaiden to validation

BASIC
EXPLORATION

• Quicktests
• Straightforward tours to determine the basics of the product, the platform, the

market, the risks, etc.
• Here, we are on the road to validation (but might not be there yet)Here, we are on the road to validation (but might not be there yet)

SYSTEMATIC
VARIATION

• Conscious, efficiently-run sampling strategy for testing compatibility with big
pool of devices / interoperable products / data-sharing partners, etc.

• Conscious, efficiently-run strategy for assessing data quality, improving
coverage (by intentionally-defined criteria)

BUSINESS
VALUE

• Assess the extent to which the product provides the value for which it was
designed, e.g. via exploratory scenario testing

EXPERT
INVESTIGATION

• Expose root causes of hard to replicate problems
• Model-building for challenging circumstances (e.g. skilled performance testing)
• Vulnerabilities that require deep technical knowledge (some security testing)
• Extent to which the product solves vital but hard to solve business problems• Extent to which the product solves vital but hard-to-solve business problems

GUI-LEVEL REGRESSION TESTING: COMMODITY-LEVEL TEST AUTOMATION

• addresses a narrow subset of the universe of testing tasks
• re-use existing tests
 ll i f h h hi i h a collection of tests that have one thing in common: the

program has passed all of them
provide little new information about the product under test
 tests are rarely revised to become harsher as the product

gets more stable, so the suite is either too harsh for early
testing or too simplistic / unrealistic for later testingtesting or too simplistic / unrealistic for later testing

 tests often address issues (e.g. boundary tests) that would
be cheaper and better tested at unit level

i• enormous maintenance costs
 several basic frameworks for reducing GUI regression

maintenance are well understood

The Tasks of Test Automation
– Theory of error • Detection

What kinds of errors do we hope to
expose?

– Input data
How will we select and generate input data

What heuristics/rules tell us there might be
a problem?

• Evaluation
How decide whether X is a problem orHow will we select and generate input data

and conditions?
– Sequential dependence

Should tests be independent? If not, what
info should persist or drive sequence from

How decide whether X is a problem or
not?

• Troubleshooting support
Failure triggers what further data collection?
N tifi tiinfo should persist or drive sequence from

test N to N+1?
– Execution

How well are test suites run, especially in
f d d l f l ?

• Notification
How/when is failure reported?

• Retention
In general, what data do we keep?

case of individual test failures?
– Output data

Observe which outputs, and what
dimensions of them?

In general, what data do we keep?
• Maintenance

How are tests / suites updated / replaced?
• Relevant contexts

– Comparison data
IF detection is via comparison to oracle data,
where do we get the data?

Under what circumstances is this approach
relevant/desirable?

We can automate any subset of these

IMPLEMENTING THE AGENDA

• Next generation of test architects

Programming skills

Test skills

Understand simulators (including simulation-support tools)

T bl h i kill (l f lTroubleshooting skills (loggers, performance analyzers,
pattern recognition, investigative thinking)

Requirements analysis and a willingness to design tools toRequirements analysis and a willingness to design tools to
be (successfully and happily) used by nonprogrammers

 Flexible understanding of the range of system-level test
b lautomation possibilities

HISTORY

• Planning for this course started in 2002

XP was in full swing

Web tutorials on nUnit were in development, and web
discussion/coaching was easy to join

Books were in draft (Beck’s was out and several othersBooks were in draft (Beck s was out and several others
were coming)

 I taught the course on my own, co-taught with Andy g y g y
Tinkham and Pat McGee. Pat Bond also taught the course.
We all had comparable results

IMPLEMENTATION-LEVEL TESTING

W d d d h f h d• We want students to understand the state of their code as
they develop it
TDD
Eclipse
 JUnit
D bDebugger
Coverage monitoring (ECL/Emma)
CheckstyleCheckstyle
 Subversion

• Several black box tests become unnecessary if adequate
i l t ti l l t ti i dimplementation-level testing is done

• We use Java tools for now, but would be at least as happy with
C# or Python if appropriate learning support materials were
available.

AGILE-BIASED COURSE CONTENT

• TDD (test-and-calibrate / code / test / fix / … / refactor / commit)

• Basic dev tools that support TDD

• Maintenance project (possible some years, not others)

• Unit test design (such as theories of coverage, testing Booleans,
testing common control-flow structures testing across differenttesting common control-flow structures, testing across different
data structures)

• System-level test architecture (some examples)

Comparison-based (e.g. test against oracle)

 Theory-of-error-based (e.g. test for manipulation of voting)

 S b d (l i) Sequence-based (e.g. long-sequence regression)

STUDENT PROFILES: UNDERGRADS

• Florida Tech undergrads

Required course for SE B.Sc.

High GPA’s / seniors / most are adequate programmers

• Many of the undergrads are used to tightly-defined problems
(d t th i bl l / th d d fil(down to the variable names, class/method names and file
structures) and find it difficult to work from scratch

• The two most successful instances were almost entirely y
undergrad. Includes 2009. Cannot generalize from these to
predictions for next year.

STUDENT PROFILES: M.SC.

• Local industry (aerospace) – rocket science mgrs are smart
but no longer remember how to write code

• I t ti l Hi hl i bl d ti l b k d M• International. Highly variable educational backgrounds. Many
are non-programmers despite near-perfect CS grades on their
transcripts.

• Enormous resistance:
Refusal to even attempt TDD
Google code / cut-and-paste fails with TDDGoogle code / cut and paste fails with TDD
Collaboration via delegation (you do this, I’ll do that…)
Open disbelief that a testing course would involve

programming
Disbelief that this approach is taken in industry
Belief that traditional development process are the OneBelief that traditional development process are the One

True Way

CHALLENGES IN TEACHING IMPLEMENTATION-LEVEL TEST DESIGN

• Unit test design (theories of coverage, testing Booleans, testing
common control-flow structures, testing across different data
structures)

• Challenges in teaching unit test design:

My expertise is in black box analysis (I am personally profoundly
more interested in helping testers assess the quality of the productmore interested in helping testers assess the quality of the product
than the adequacy of the implementation (or the purity of the
development process)).

Th t I l t tb k f i i ti (fThat means I rely on textbooks for inspiration (of me
and my students). My focus will be on what the book
credibly and intelligibly supports, IF I can find a book

h iworth using.

LEARNING OBJECTS (FROM MY NOTES TO WTST)
• Agile books focus on the tool and the process not on the testing Minimal• Agile books focus on the tool and the process, not on the testing. Minimal

design advice, and much of what is there is bad.
• The new university textbooks present testing almost as applied discrete

math. Lots of theory. Lots of references to formal literature. y
• I need a way to connect test ideas to tasks that programmers might actually

do or be asked to do in real jobs (as distinct from MS research, IBM
Research, etc.). These books are not helping me.

• I need materials that engineers (as opposed to theorists) can understand
and not immediately lose patience with. I need books that help me with the
credibility of what they teach. That is, specific technical advice, with notes
on real life applications in circumstances that normal humans are likely toon real-life applications in circumstances that normal humans are likely to
encounter in companies where they might actually work.

• The credibility must be built up through the technical presentation, not
through the “quality process” discussions that (at best) are likely to bounce g q y p () y
off of students who are studying to become individual practitioners.

• At this time, I have not found a book worth adopting. (WTST participants
skimmed 2 large tables worth of books reviewed for this course.)

• If there are new books coming that fill this gap, we were unaware of them.

IMPLEMENTATION OF THE COURSE
• Easy introductory material to introduce students to• Easy introductory material to introduce students to
 Unit test tools, eclipse, source control
 Problem decomposition, calibration
 Thi h l d t d i t th Oth f lt This has evolved to dominate the course. Other faculty were

unsurprised that this would be a major issue without a decent
text, because we are reteaching students how to program.

• Mid-level programming of increasingly complex problemsMid level programming of increasingly complex problems
 Astels provided good training wheels tasks. No current artefacts

available
• Maintenance (no longer part of the course)(g p)
Open source tool 1000 statements (ideal) with comprehensible

code.
• Final exam
 Complex problem, takehome, open book, 2 – to – 4 weeks for

the exam (hard deadline)
 Build a test tool that does X
 Review exam drafts in advance

IN-CLASS LABS

1. Testing basic code structures (e.g. conditionals, loops)

2. Intro. to refactoring

3. Problem decomposition, insertion sort as an example.

4. Debugging

5 T i d (li)5. Testing common data structures (e.g. arrays, lists, maps)

6. Refactoring existing code (two labs).

16
Nawwar Kabbani, Workshop on Teaching Software Testing (WTST) January 29-31, 2010

HOMEWORK

• 5 homeworks

Hello world!

Ticket Machine (conditionals)

Date Arithmetic (loops, Boolean expressions, coverage,
oracles)oracles)

 Files I/O (files, exceptions, oracles)

Parameterized tests (JUnit parameterized tests, data-drivenParameterized tests (JUnit parameterized tests, data driven
tests, files)

• 2 assignments.

Random Numbers Generator

Refactoring and code Smells

17
Nawwar Kabbani, Workshop on Teaching Software Testing (WTST) January 29-31, 2010

FINAL EXAM

• Take home individual project.
• Tuned down of the 2008 version.
• Grading addressed mainly the following points:• Grading addressed mainly the following points:
 Completeness (how many requirement items were implemented)
 Course objectives

- Correct using of TDD
- Industry standard tools (checkstyle, branch coverage, svn)
- Problem decompositionp
- Technical communication
- Glass box techniques

Refactoring- Refactoring
- Good test design
- Well designed code

18
Nawwar Kabbani, Workshop on Teaching Software Testing (WTST) January 29-31, 2010

RESULTS

• Several students are fully successful

Good jobs at good pay after (this, unfortunately, attracts
other unsuitable students)

• Many students are resistant

• Many students are inadequate programmers and attempt to• Many students are inadequate programmers and attempt to
stick to development strategies that will not work in this
course

We review the source code repository for each assignment,
to assess refactoring and evolution. Students who buy code
or cut-and-paste code fail b/c of no TDDor cut-and-paste code fail b/c of no TDD

• Stunningly many students start at the last minute despite
midterm exam and assignment experiences

EXAM RESULTS

Student
(score%)

SVN Check-ins
(commits) LOC (non-blank) LOC / Commit

S1 (98) 83 3143 37.87
S2 (98) 52 1996 38.38
S3 (95) 50 1785 35.7
S4 (94) 116 3567 30.75
S5 (90) 61 1600 26.23
S6 (88) 28 999 35.68
S7 (86) 34 774 22.76
S8 (81) 105 1660 15.81
S9 (80) 33 1080 32.73
S10 (79) 19 1429 75.21
S11 (52) 21 884 42.1
S12 (52) 21 639 30.43
S13 (52) 73 415 5.68
S14 (30) 57 918 16.11
S15 (28) 18 385 21.39
S16 (16) 8 489 61.13()

NB: 2 students didn’t submit the final

20
Nawwar Kabbani, Workshop on Teaching Software Testing (WTST) January 29-31, 2010

SUBVERSION COMMITS OVER TIME – TOP 5 SCORES

21
Nawwar Kabbani, Workshop on Teaching Software Testing (WTST) January 29-31,

2010

SUBVERSION COMMITS OVER TIME – MIDDLE SCORES

22
Nawwar Kabbani, Workshop on Teaching Software Testing (WTST) January 29-31,

2010

SUBVERSION COMMITS OVER TIME – BOTTOM 6 SCORES

23
Nawwar Kabbani, Workshop on Teaching Software Testing (WTST) January 29-31, 2010

WHAT DO WE NEED? (PRESENTATION AT WTST)

• Instructional support
 Textbook for 1st year students in Java, C# or Python
 Textbook for somewhat-more experienced programmers (2nd or 3rd Textbook for somewhat more experienced programmers (2 or 3

year students), but it cannot assume detailed knowledge of
programming concepts (profile of returning students makes this unwise)

 Workbooks to support commercial or online instruction
• Learning objects
 Risk analyses for common programming language constructs (how can

they fail?) This need not be language-specific
 Kept-up-to-date examples (video demonstration) of test-driven

development of sample programs
 Better examples (with videos) of refactorings, without assumptions of

strong familiarity with the programming constructs or the authors’strong familiarity with the programming constructs or the authors
favorite patterns

• Testimonials targeted to students instead of business clients and funding
agenciesagencies

WHERE DO WE GO FROM HERE?

• Drop emphasis on TDD,

 refocus on implementation level tests in context of student-
written test tools

Change textbook focus (we will still have big problems)

• Many of the problems with student work especially M Sc• Many of the problems with student work, especially M.Sc.
work, will not go away by changing dev process

• We will need a new control method to detect cheatingg

• Your thoughts are welcome

Copyright (c) Cem Kaner 25

